Show simple item record

dc.contributor.authorLiang, Percy
dc.contributor.authorSrebro, Nathan
dc.date.accessioned2005-12-22T02:19:52Z
dc.date.available2005-12-22T02:19:52Z
dc.date.issued2004-12-30
dc.identifier.otherMIT-CSAIL-TR-2004-081
dc.identifier.otherAIM-2004-030
dc.identifier.urihttp://hdl.handle.net/1721.1/30511
dc.description.abstractMarkov trees generalize naturally to bounded tree-width Markov networks, onwhich exact computations can still be done efficiently. However, learning themaximum likelihood Markov network with tree-width greater than 1 is NP-hard, sowe discuss a few algorithms for approximating the optimal Markov network. Wepresent a set of methods for training a density estimator. Each method isspecified by three arguments: tree-width, model scoring metric (maximumlikelihood or minimum description length), and model representation (using onejoint distribution or several class-conditional distributions). On thesemethods, we give empirical results on density estimation and classificationtasks and explore the implications of these arguments.
dc.format.extent10 p.
dc.format.extent10714507 bytes
dc.format.extent473643 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesMassachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory
dc.subjectAI
dc.subjecttree-width
dc.subjecthypertrees
dc.subjectMarkov Networks
dc.subjectmaximum likelihood
dc.subjectMDL
dc.titleMethods and Experiments With Bounded Tree-width Markov Networks


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record