Empirical Effective Dimension and Optimal Rates for Regularized Least Squares Algorithm
Author(s)
Caponnetto, Andrea; Rosasco, Lorenzo; Vito, Ernesto De; Verri, Alessandro
DownloadMIT-CSAIL-TR-2005-036.ps (10897Kb)
Additional downloads
Metadata
Show full item recordAbstract
This paper presents an approach to model selection for regularized least-squares on reproducing kernel Hilbert spaces in the semi-supervised setting. The role of effective dimension was recently shown to be crucial in the definition of a rule for the choice of the regularization parameter, attaining asymptotic optimal performances in a minimax sense. The main goal of the present paper is showing how the effective dimension can be replaced by an empirical counterpart while conserving optimality. The empirical effective dimension can be computed from independent unlabelled samples. This makes the approach particularly appealing in the semi-supervised setting.
Date issued
2005-05-27Other identifiers
MIT-CSAIL-TR-2005-036
AIM-2005-019
CBCL-252
Series/Report no.
Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory
Keywords
AI, optimal rates, effective dimension, semi-supervised learning