dc.contributor.author | Gassend, B. | |
dc.contributor.author | O'Donnell, C. W. | |
dc.contributor.author | Thies, W. | |
dc.contributor.author | Lee, A. | |
dc.contributor.author | van Dijk, M. | |
dc.contributor.author | Devadas, S. | |
dc.contributor.other | Computation Structures | |
dc.date.accessioned | 2005-12-22T02:37:06Z | |
dc.date.available | 2005-12-22T02:37:06Z | |
dc.date.issued | 2005-10-06 | |
dc.identifier.other | MIT-CSAIL-TR-2005-060 | |
dc.identifier.other | MIT-LCS-TR-1003 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/30571 | |
dc.description.abstract | Our goal is to develop a state-of-the-art predictor with an intuitive and biophysically-motivated energy model through the use of Hidden Markov Support Vector Machines (HM-SVMs), a recent innovation in the field of machine learning. We focus on the prediction of alpha helices in proteins and show that using HM-SVMs, a simple 7-state HMM with 302 parameters can achieve a Q_alpha value of 77.6% and a SOV_alpha value of 73.4%. We briefly describe how our method can be generalized to predicting beta strands and sheets. | |
dc.format.extent | 15 p. | |
dc.format.extent | 18110378 bytes | |
dc.format.extent | 702915 bytes | |
dc.format.mimetype | application/postscript | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en_US | |
dc.relation.ispartofseries | Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory | |
dc.title | Secondary Structure Prediction of All-Helical Proteins Using Hidden Markov Support Vector Machines | |