Show simple item record

dc.contributor.authorGassend, B.
dc.contributor.authorO'Donnell, C. W.
dc.contributor.authorThies, W.
dc.contributor.authorLee, A.
dc.contributor.authorvan Dijk, M.
dc.contributor.authorDevadas, S.
dc.contributor.otherComputation Structures
dc.date.accessioned2005-12-22T02:37:06Z
dc.date.available2005-12-22T02:37:06Z
dc.date.issued2005-10-06
dc.identifier.otherMIT-CSAIL-TR-2005-060
dc.identifier.otherMIT-LCS-TR-1003
dc.identifier.urihttp://hdl.handle.net/1721.1/30571
dc.description.abstractOur goal is to develop a state-of-the-art predictor with an intuitive and biophysically-motivated energy model through the use of Hidden Markov Support Vector Machines (HM-SVMs), a recent innovation in the field of machine learning. We focus on the prediction of alpha helices in proteins and show that using HM-SVMs, a simple 7-state HMM with 302 parameters can achieve a Q_alpha value of 77.6% and a SOV_alpha value of 73.4%. We briefly describe how our method can be generalized to predicting beta strands and sheets.
dc.format.extent15 p.
dc.format.extent18110378 bytes
dc.format.extent702915 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesMassachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory
dc.titleSecondary Structure Prediction of All-Helical Proteins Using Hidden Markov Support Vector Machines


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record