dc.contributor.author | Lippert, Ross | |
dc.contributor.author | Rifkin, Ryan | |
dc.date.accessioned | 2005-12-22T02:40:10Z | |
dc.date.available | 2005-12-22T02:40:10Z | |
dc.date.issued | 2005-10-20 | |
dc.identifier.other | MIT-CSAIL-TR-2005-067 | |
dc.identifier.other | AIM-2005-030 | |
dc.identifier.other | CBCL-257 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/30577 | |
dc.description.abstract | We consider regularized least-squares (RLS) with a Gaussian kernel. Weprove that if we let the Gaussian bandwidth $\sigma \rightarrow\infty$ while letting the regularization parameter $\lambda\rightarrow 0$, the RLS solution tends to a polynomial whose order iscontrolled by the relative rates of decay of $\frac{1}{\sigma^2}$ and$\lambda$: if $\lambda = \sigma^{-(2k+1)}$, then, as $\sigma \rightarrow\infty$, the RLS solution tends to the $k$th order polynomial withminimal empirical error. We illustrate the result with an example. | |
dc.format.extent | 1 p. | |
dc.format.extent | 7286963 bytes | |
dc.format.extent | 527607 bytes | |
dc.format.mimetype | application/postscript | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en_US | |
dc.relation.ispartofseries | Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory | |
dc.subject | AI | |
dc.subject | machine learning | |
dc.subject | regularization | |
dc.title | Asymptotics of Gaussian Regularized Least-Squares | |