Show simple item record

dc.contributor.authorLippert, Ross
dc.contributor.authorRifkin, Ryan
dc.date.accessioned2005-12-22T02:40:10Z
dc.date.available2005-12-22T02:40:10Z
dc.date.issued2005-10-20
dc.identifier.otherMIT-CSAIL-TR-2005-067
dc.identifier.otherAIM-2005-030
dc.identifier.otherCBCL-257
dc.identifier.urihttp://hdl.handle.net/1721.1/30577
dc.description.abstractWe consider regularized least-squares (RLS) with a Gaussian kernel. Weprove that if we let the Gaussian bandwidth $\sigma \rightarrow\infty$ while letting the regularization parameter $\lambda\rightarrow 0$, the RLS solution tends to a polynomial whose order iscontrolled by the relative rates of decay of $\frac{1}{\sigma^2}$ and$\lambda$: if $\lambda = \sigma^{-(2k+1)}$, then, as $\sigma \rightarrow\infty$, the RLS solution tends to the $k$th order polynomial withminimal empirical error. We illustrate the result with an example.
dc.format.extent1 p.
dc.format.extent7286963 bytes
dc.format.extent527607 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesMassachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory
dc.subjectAI
dc.subjectmachine learning
dc.subjectregularization
dc.titleAsymptotics of Gaussian Regularized Least-Squares


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record