Show simple item record

dc.contributor.authorTaycher, Leonid
dc.contributor.authorShakhnarovich, Gregory
dc.contributor.authorDemirdjian, David
dc.contributor.authorDarrell, Trevor
dc.date.accessioned2005-12-22T02:41:53Z
dc.date.available2005-12-22T02:41:53Z
dc.date.issued2005-12-01
dc.identifier.otherMIT-CSAIL-TR-2005-079
dc.identifier.otherAIM-2005-034
dc.identifier.urihttp://hdl.handle.net/1721.1/30588
dc.description.abstractWe describe a state-space tracking approach based on a Conditional Random Field(CRF) model, where the observation potentials are \emph{learned} from data. Wefind functions that embed both state and observation into a space wheresimilarity corresponds to $L_1$ distance, and define an observation potentialbased on distance in this space. This potential is extremely fast to compute and in conjunction with a grid-filtering framework can be used to reduce acontinuous state estimation problem to a discrete one. We show how a statetemporal prior in the grid-filter can be computed in a manner similar to asparse HMM, resulting in real-time system performance. The resulting system isused for human pose tracking in video sequences.
dc.format.extent9 p.
dc.format.extent21558399 bytes
dc.format.extent932744 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesMassachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory
dc.subjectAI
dc.subjectarticulated tracking
dc.subjectgrid filter
dc.subjectconditional random field
dc.titleConditional Random People: Tracking Humans with CRFs and Grid Filters


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record