Show simple item record

dc.contributor.authorIvanov, Yuri
dc.contributor.authorSerre, Thomas
dc.contributor.authorBouvrie, Jacob
dc.date.accessioned2005-12-22T02:44:17Z
dc.date.available2005-12-22T02:44:17Z
dc.date.issued2005-12-14
dc.identifier.otherMIT-CSAIL-TR-2005-081
dc.identifier.otherAIM-2005-035
dc.identifier.otherCBCL-258
dc.identifier.urihttp://hdl.handle.net/1721.1/30590
dc.description.abstractIn this paper we describe a technique of classifier combination used in a human identification system. The system integrates all available features from multi-modal sources within a Bayesian framework. The framework allows representinga class of popular classifier combination rules and methods within a single formalism. It relies on a “per-class” measure of confidence derived from performance of each classifier on training data that is shown to improve performance on a synthetic data set. The method is especially relevant in autonomous surveillance setting where varying time scales and missing features are a common occurrence. We show an application of this technique to the real-world surveillance database of video and audio recordings of people collected over several weeks in the office setting.
dc.format.extent7 p.
dc.format.extent22108540 bytes
dc.format.extent952178 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesMassachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory
dc.subjectAI
dc.subjectclassifier combination
dc.subjectface recognition
dc.subjectidentification
dc.subjectmulti-modal
dc.titleError weighted classifier combination for multi-modal human identification


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record