MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Symmetriad: A Journey of Discovery Through the Land of the Polychora

Author(s)
Radul, Alexey
Thumbnail
DownloadMIT-CSAIL-TR-2006-024.pdf (1.005Mb)
Additional downloads
Other Contributors
Mathematics and Computation
Advisor
Gerald Sussman
Metadata
Show full item record
Abstract
I devised and implemented a method for constructing regular andsemiregular geometric objects in n-dimensional Euclidean space.Given a finite reflection group (a Coxeter group) G, there is a standard way to give G a group action on n-space.Reflecting a point through this group action yieldsan object that exhibits the symmetries specified by G. If the pointis chosen well, the object is guaranteed to be regular or semiregular,and many interesting regular and semiregular objectsarise this way. By starting with the symmetry group, I can use thegroup structure both to simplify the actual graphics involved withdisplaying the object, and to illustrate various aspects of itsstructure. For example, subgroups of the symmetry group (and theircosets) correspond to substructures of the object. Conversely, bydisplaying such symmetric objects and their various substructures, Ifind that I can elucidate the structure of the symmetry group thatgives rise to them.I have written The Symmetriad, the computer system whose name thisdocument has inherited, and used it to explore 3- and 4-dimensionalsymmetric objects and their symmetry groups. The 3-dimensionalobjects are already well understood, but they serve to illustrate thetechniques used on the 4-dimensional objects and make them morecomprehensible. Four dimensions offers a treasure trove of intriguingstructures, many of which have no ready 3D analogue. These are what Iwill show you here.
Description
MEng thesis
Date issued
2005
URI
http://hdl.handle.net/1721.1/32531
Citation
Radul, Alexey. The Symmetriad : a journey of discovery through the land of the polychora / by Alexey Radul. c2005.Institute Archives - Noncirculating Collection 3 | THESIS Thesis E.E. 2005 M.Eng
Other identifiers
MIT-CSAIL-TR-2006-024
Series/Report no.
Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.