MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Probabilistic Particle Control Approach to Optimal, Robust Predictive Control

Author(s)
Blackmore, Lars
Thumbnail
DownloadMIT-CSAIL-TR-2006-031.ps (7711.Kb)
Additional downloads
Other Contributors
Model-based Embedded and Robotic Systems
Advisor
Brian Williams
Metadata
Show full item record
Abstract
Autonomous vehicles need to be able to plan trajectories to a specified goal that avoid obstacles, and are robust to the inherent uncertainty in the problem. This uncertainty arises due to uncertain state estimation, disturbances and modeling errors. Previous solutions to the robust path planning problem solved this problem using a finite horizon optimal stochastic control approach. This approach finds the optimal path subject to chance constraints, which ensure that the probability of collision with obstacles is below a given threshold. This approach is limited to problems where all uncertain distributions are Gaussian, and typically result in highly conservative plans. In many cases, however, the Gaussian assumption is invalid; for example in the case of localization, the belief state about a vehicleÂ’s position can consist of highly non-Gaussian, even multimodal, distributions.In this paper we present a novel method for finite horizon stochastic control ofdynamic systems subject to chance constraints. The method approximates the distribution of the system state using a finite number of particles. By expressing these particles in terms of the control variables, we are able to approximate the original stochastic control problem as a deterministic one; furthermore the approximation becomes exact as the number of particles tends to infinity. For a general class of chance constrained problems with linear system dynamics, we show that the approximate problem can be solved using efficient Mixed-Integer Linear Programming techniques. We apply the new method to aircraft control in turbulence, and show simulation results that demonstrate the efficacy of the approach.
Date issued
2006-04-28
URI
http://hdl.handle.net/1721.1/32538
Other identifiers
MIT-CSAIL-TR-2006-031
Series/Report no.
Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.