MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning using the Born Rule

Author(s)
Wolf, Lior
Thumbnail
DownloadMIT-CSAIL-TR-2006-036.pdf (635.3Kb)
Additional downloads
Other Contributors
Vision
Advisor
Tomaso Poggio
Metadata
Show full item record
Abstract
In Quantum Mechanics the transition from a deterministic descriptionto a probabilistic one is done using a simple rule termed the Bornrule. This rule states that the probability of an outcome ($a$)given a state ($\Psi$) is the square of their inner products($(a^\top\Psi)^2$).In this paper, we unravel a new probabilistic justification forpopular algebraic algorithms, based on the Born rule. Thesealgorithms include two-class and multiple-class spectral clustering,and algorithms based on Euclidean distances.
Date issued
2006-05-16
URI
http://hdl.handle.net/1721.1/32978
Other identifiers
MIT-CSAIL-TR-2006-036
CBCL-261
Series/Report no.
Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.