MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ATAC: A Manycore Processor with On-Chip Optical Network

Author(s)
Liu, Jifeng; Psota, James; Beckmann, Nathan; Miller, Jason; Michel, Jurgen; Eastep, Jonathan; Kurian, George; Kimerling, Lionel; Agarwal, Anant; Beals, Mark; ... Show more Show less
Thumbnail
DownloadMIT-CSAIL-TR-2009-018.pdf (584.0Kb)
Additional downloads
MIT-CSAIL-TR-2009-018.ps (1.353Mb)
Other Contributors
Computer Architecture
Advisor
Anant Agarwal
Metadata
Show full item record
Abstract
Ever since industry has turned to parallelism instead of frequency scaling to improve processor performance, multicore processors have continued to scale to larger and larger numbers of cores. Some believe that multicores will have 1000 cores or more by the middle of the next decade. However, their promise of increased performance will only be reached if their inherent scaling and programming challenges are overcome. Meanwhile, recent advances in nanophotonic device manufacturing are making chip-stack optics a reality; interconnect technology which can provide significantly more bandwidth at lower power than conventional electrical analogs. Perhaps more importantly, optical interconnect also has the potential to enable new, easy-to-use programming models enabled by an inexpensive broadcast mechanism. This paper introduces ATAC, a new manycore architecture that capitalizes on the recent advances in optics to address a number of the challenges that future manycore designs will face. The new constraints and opportunities associated with on-chip optical interconnect are presented and explored in the design of ATAC. Furthermore, this paper introduces ACKwise, a novel directory-based cache coherence protocol that takes advantage of the special properties of ATAC to achieve high performance and scalability on large-scale manycores. Early performance results show that a 1000-core ATAC chip achieves a speedup of as much as 39% when compared with a similarly sized manycore with an electrical mesh network.
Date issued
2009-05-05
URI
http://hdl.handle.net/1721.1/45510
Series/Report no.
MIT-CSAIL-TR-2009-018
Keywords
Many-core processors, Processor interconnects, Optical interconnects

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.