Show simple item record

dc.contributor.advisorMartin Rinard
dc.contributor.authorGanesh, Vijayen_US
dc.contributor.authorSingh, Rishabhen_US
dc.contributor.authorNear, Joseph P.en_US
dc.contributor.authorRinard, Martinen_US
dc.contributor.otherComputer Architectureen_US
dc.date.accessioned2009-08-26T22:00:06Z
dc.date.available2009-08-26T22:00:06Z
dc.date.issued2009-08-26
dc.identifier.urihttp://hdl.handle.net/1721.1/46691
dc.description.abstractWe present AvatarSAT, a SAT solver that uses machine-learning classifiers to automatically tune the heuristics of an off-the-shelf SAT solver on a per-instance basis. The classifiers use features of both the input and conflict clauses to select parameter settings for the solver's tunable heuristics. On a randomly selected set of SAT problems chosen from the 2007 and 2008 SAT competitions, AvatarSAT is, on average, over two times faster than MiniSAT based on the geometric mean speedup measure and 50% faster based on the arithmeticmean speedup measure. Moreover, AvatarSAT is hundreds to thousands of times faster than MiniSAT on many hard SAT instances and is never more than twenty times slower than MiniSAT on any SAT instance.en_US
dc.format.extent7 p.en_US
dc.relation.ispartofseriesMIT-CSAIL-TR-2009-039
dc.rightsCreative Commons Attribution 3.0 Unporteden_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/
dc.subjectself-tuningen_US
dc.subjectmachine learningen_US
dc.subjectSAT solversen_US
dc.titleAvatarSAT: An Auto-tuning Boolean SAT Solveren_US


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record