An Experimental Platform for Investigating Decision and Collaboration Technologies in Time-Sensitive Mission Control Operations
Author(s)
Scott, S. D.; Cummings, M. L.
DownloadHAL2007-04.pdf (5.927Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. Humans and Automation Laboratory
Metadata
Show full item recordAbstract
This report describes the conceptual design and detailed architecture of an experimental platform
developed to support investigations of novel decision and collaboration technologies for
complex, time-critical mission control operations, such as military command and control and
emergency response. In particular, the experimental platform is designed to enable exploration
of novel interface and interaction mechanisms to support both human-human collaboration and
human-machine collaboration for mission control operations involving teams of human operators
engaged in supervisory control of intelligent systems, such as unmanned aerial vehicles (UAVs).
Further, the experimental platform is designed to enable both co-located and distributed
collaboration among operations team members, as well as between team members and relevant
mission stakeholders.
To enable initial investigations of new information visualization, data fusion, and data sharing
methods, the experimental platform provides a synthetic task environment for a representative
collaborative time-critical mission control task scenario. This task scenario involves a UAV
operations team engaged in intelligence, surveillance, and reconnaissance (ISR) activities. In the
experimental task scenario, the UAV team consists of one mission commander and three
operators controlling multiple, homogeneous, semi-autonomous UAVs. In order to complete its
assigned missions, the UAV team must coordinate with a ground convoy, an external strike
team, and a local joint surveillance and target attack radar system (JSTARS). This report details
this task scenario, including the possible simulation events that can occur and the logic
governing the simulation dynamics.
In order to perform human-in-the-loop experimentation within the synthetic task environment,
the experimental platform also consists of a physical laboratory designed to emulate a miniature
command center. The Command Center Laboratory comprises a number of large-screen
displays, multi-screen operator stations, and mobile, tablet-style devices. This report details the
physical configuration and hardware components of this Command Center Laboratory. Details
are also provided of the software architecture used to implement the synthetic task environment
and experimental interface technologies to facilitate user experiments in this laboratory.
The report also summarizes the process of conducting an experiment in the experimental
platform, including details of scenario design, hardware and software instrumentation, and
participant training. Finally, the report suggests several improvements that could be made to the
experimental platform based on insights gained from initial user experiments that have been
conducted in this environment.
Date issued
2007Publisher
MIT Humans and Automation Laboratory
Series/Report no.
HAL Reports;HAL2007-04