MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Iterative Projection Methods for Structured Sparsity Regularization

Author(s)
Rosasco, Lorenzo; Verri, Alessandro; Santoro, Matteo; Mosci, Sofia; Villa, Silvia
Thumbnail
DownloadMIT-CSAIL-TR-2009-050.pdf (510.3Kb)
Other Contributors
Center for Biological and Computational Learning (CBCL)
Advisor
Tomaso Poggio
Metadata
Show full item record
Abstract
In this paper we propose a general framework to characterize and solve the optimization problems underlying a large class of sparsity based regularization algorithms. More precisely, we study the minimization of learning functionals that are sums of a differentiable data term and a convex non differentiable penalty. These latter penalties have recently become popular in machine learning since they allow to enforce various kinds of sparsity properties in the solution. Leveraging on the theory of Fenchel duality and subdifferential calculus, we derive explicit optimality conditions for the regularized solution and propose a general iterative projection algorithm whose convergence to the optimal solution can be proved. The generality of the framework is illustrated, considering several examples of regularization schemes, including l1 regularization (and several variants), multiple kernel learning and multi-task learning. Finally, some features of the proposed framework are empirically studied.
Date issued
2009-10-14
URI
http://hdl.handle.net/1721.1/49428
Series/Report no.
MIT-CSAIL-TR-2009-050CBCL-282
Keywords
computation, learning

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.