MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Cost of Global Broadcast Using Abstract MAC Layers

Author(s)
Lynch, Nancy; Kuhn, Fabian; Kowalski, Dariusz; Khabbazian, Majid
Thumbnail
DownloadMIT-CSAIL-TR-2010-005.pdf (386.1Kb)
Other Contributors
Theory of Computation
Advisor
Nancy Lynch
Metadata
Show full item record
Abstract
We analyze greedy algorithms for broadcasting messages throughout a multi-hop wireless network, using a slot-based model that includes message collisions without collision detection. Our algorithms are split formally into two pieces: a high-level piece for broadcast and a low-level piece for contention management. We accomplish the split using abstract versions of the MAC layer to encapsulate the contention management. We use two different abstract MAC layers: a basic non-probabilistic one, which our contention management algorithm implements with high probability, and a probabilistic one, which our contention management algorithm implements precisely. Using this approach, we obtain the following complexity bounds: Single-message broadcast, using the basic abstract MAC layer, takes time O(D log(n/epsilon) log(Delta)) to deliver the message everywhere with probability 1 - epsilon, where D is the network diameter, n is the number of nodes, and Delta is the maximum node degree. Single-message broadcast, using the probabilistic abstract MAC layer, takes time only O((D + log(n/epsilon)) log(Delta)). For multi-message broadcast, the bounds are O((D + k' Delta) log(n/epsilon) log(Delta)) using the basic layer and O((D + k' Delta log(n/epsilon)) log(Delta)) using the probabilistic layer,for the time to deliver a single message everywhere in the presence of at most k' concurrent messages.
Date issued
2010-02-09
URI
http://hdl.handle.net/1721.1/51667
Series/Report no.
MIT-CSAIL-TR-2010-005

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.