MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning Physical Descriptions from Functional Definitions, Examples, and Precedents

Author(s)
Winston, Patrick H.; Binford, Thomas O.; Katz, Boris; Lowry, Michael
Thumbnail
DownloadAIM-679.ps (6.526Mb)
Additional downloads
AIM-679.pdf (924.4Kb)
Metadata
Show full item record
Abstract
It is too hard to tell vision systems what things look like. It is easier to talk about purpose and what things are for. Consequently, we want vision systems to use functional descriptions to identify things when necessary, and we want them to learn physical descriptions for themselves, when possible. This paper describes a theory that explains how to make such systems work. The theory is a synthesis of two sets of ideas: ideas about learning from precedents and exercises developed at MIT and ideas about physical description developed at Stanford. The strength of the synthesis is illustrated by way of representative experiments. All of these experiments have been performed with an implemented system.
Date issued
1982-11-01
URI
http://hdl.handle.net/1721.1/5669
Other identifiers
AIM-679
Series/Report no.
AIM-679
Keywords
learning, form and function

Collections
  • AI Memos (1959 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.