MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Efficient Learning Procedure for Deep Boltzmann Machines

Author(s)
Salakhutdinov, Ruslan; Hinton, Geoffrey
Thumbnail
DownloadMIT-CSAIL-TR-2010-037.pdf (735.7Kb)
Other Contributors
Computational Cognitive Science
Advisor
Joshua Tenenbaum
Metadata
Show full item record
Abstract
We present a new learning algorithm for Boltzmann Machines that contain many layers of hidden variables. Data-dependent statistics are estimated using a variational approximation that tends to focus on a single mode, and data-independent statistics are estimated using persistent Markov chains. The use of two quite different techniques for estimating the two types of statistic that enter into the gradient of the log likelihood makes it practical to learn Boltzmann Machines with multiple hidden layers and millions of parameters. The learning can be made more efficient by using a layer-by-layer "pre-training" phase that initializes the weights sensibly. The pre-training also allows the variational inference to be initialized sensibly with a single bottom-up pass. We present results on the MNIST and NORB datasets showing that Deep Boltzmann Machines learn very good generative models of hand-written digits and 3-D objects. We also show that the features discovered by Deep Boltzmann Machines are a very effective way to initialize the hidden layers of feed-forward neural nets which are then discriminatively fine-tuned.
Date issued
2010-08-04
URI
http://hdl.handle.net/1721.1/57474
Series/Report no.
MIT-CSAIL-TR-2010-037
Keywords
Deep learning, Graphical models, Boltzmann Machines

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.