MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

One-Shot Learning with a Hierarchical Nonparametric Bayesian Model

Author(s)
Salakhutdinov, Ruslan; Tenenbaum, Josh; Torralba, Antonio
Thumbnail
DownloadMIT-CSAIL-TR-2010-052.pdf (1.935Mb)
Other Contributors
Computational Cognitive Science
Advisor
Joshua Tenenbaum
Metadata
Show full item record
Abstract
We develop a hierarchical Bayesian model that learns to learn categories from single training examples. The model transfers acquired knowledge from previously learned categories to a novel category, in the form of a prior over category means and variances. The model discovers how to group categories into meaningful super-categories that express different priors for new classes. Given a single example of a novel category, we can efficiently infer which super-category the novel category belongs to, and thereby estimate not only the new category's mean but also an appropriate similarity metric based on parameters inherited from the super-category. On MNIST and MSR Cambridge image datasets the model learns useful representations of novel categories based on just a single training example, and performs significantly better than simpler hierarchical Bayesian approaches. It can also discover new categories in a completely unsupervised fashion, given just one or a few examples.
Date issued
2010-10-13
URI
http://hdl.handle.net/1721.1/60025
Series/Report no.
MIT-CSAIL-TR-2010-052
Keywords
hierarchical Bayes, semi-supervised learning, learning to learn

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.