MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic Input Rectification

Author(s)
Long, Fan; Ganesh, Vijay; Carbin, Micheal; Sidiroglou, Stelios; Rinard, Martin
Thumbnail
DownloadMIT-CSAIL-TR-2011-044.pdf (16.56Mb)
Other Contributors
Computer Architecture
Advisor
Martin Rinard
Metadata
Show full item record
Abstract
We present a novel technique, automatic input rectification, and a prototype implementation called SOAP. SOAP learns a set of constraints characterizing typical inputs that an application is highly likely to process correctly. When given an atypical input that does not satisfy these constraints, SOAP automatically rectifies the input (i.e., changes the input so that is satisfies the learned constraints). The goal is to automatically convert potentially dangerous inputs into typical inputs that the program is highly likely to process correctly. Our experimental results show that, for a set of benchmark applications (namely, Google Picasa, ImageMagick, VLC, Swfdec, and Dillo), this approach effectively converts malicious inputs (which successfully exploit vulnerabilities in the application) into benign inputs that the application processes correctly. Moreover, a manual code analysis shows that, if an input does satisfy the learned constraints, it is incapable of exploiting these vulnerabilities. We also present the results of a user study designed to evaluate the subjective perceptual quality of outputs from benign but atypical inputs that have been automatically rectified by SOAP to conform to the learned constraints. Specifically, we obtained benign inputs that violate learned constraints, used our input rectifier to obtain rectified inputs, then paid Amazon Mechanical Turk users to provide their subjective qualitative perception of the difference between the outputs from the original and rectified inputs. The results indicate that rectification can often preserve much, and in many cases all, of the desirable data in the original input.
Date issued
2011-10-03
URI
http://hdl.handle.net/1721.1/66170
Publisher
MIT CSAIL
Series/Report no.
MIT-CSAIL-TR-2011-044

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.