Show simple item record

dc.contributor.authorNiyogi, Parthaen_US
dc.date.accessioned2004-10-20T20:28:05Z
dc.date.available2004-10-20T20:28:05Z
dc.date.issued1996-09-01en_US
dc.identifier.otherAITR-1587en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/7069
dc.description.abstractThis thesis attempts to quantify the amount of information needed to learn certain tasks. The tasks chosen vary from learning functions in a Sobolev space using radial basis function networks to learning grammars in the principles and parameters framework of modern linguistic theory. These problems are analyzed from the perspective of computational learning theory and certain unifying perspectives emerge.en_US
dc.format.extent3260099 bytes
dc.format.extent3332017 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesAITR-1587en_US
dc.titleThe Informational Complexity of Learning from Examplesen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record