MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Case for Fine-Grain Adaptive Cache Coherence

Author(s)
Kurian, George; Khan, Omer; Devadas, Srinivas
Thumbnail
DownloadMIT-CSAIL-TR-2012-012.pdf (759.6Kb)
Other Contributors
Computation Structures
Advisor
Srini Devadas
Metadata
Show full item record
Abstract
As transistor density continues to grow geometrically, processor manufacturers are already able to place a hundred cores on a chip (e.g., Tilera TILE-Gx 100), with massive multicore chips on the horizon. Programmers now need to invest more effort in designing software capable of exploiting multicore parallelism. The shared memory paradigm provides a convenient layer of abstraction to the programmer, but will current memory architectures scale to hundreds of cores? This paper directly addresses the question of how to enable scalable memory systems for future multicores. We develop a scalable, efficient shared memory architecture that enables seamless adaptation between private and logically shared caching at the fine granularity of cache lines. Our data-centric approach relies on in hardware runtime profiling of the locality of each cache line and only allows private caching for data blocks with high spatio-temporal locality. This allows us to better exploit on-chip cache capacity and enable low-latency memory access in large-scale multicores.
Date issued
2012-05-22
URI
http://hdl.handle.net/1721.1/70909
Series/Report no.
MIT-CSAIL-TR-2012-012

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.