MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Synthetic Biology
  • Communications
  • View Item
  • DSpace@MIT Home
  • Synthetic Biology
  • Communications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cellular computation and communications using engineered genetic regulatory networks

Author(s)
Weiss, Ron, 1970-
Thumbnail
DownloadFull printable version (19.41Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Thomas F. Knight, Jr., Gerald Jay Sussman and Harold Abelson.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, I present an engineering discipline for obtaining complex, predictable, and reliable cell behaviors by embedding biochemical logic circuits and programmed intercellular communications into cells. To accomplish this goal, I provide a well-characterized component library, a biocircuit design methodology, and software design tools. I have built and characterized an initial cellular gate library with biochemical gates that implement the NOT, IMPLIES, and AND logic functions in E. coli cells. The logic gates perform computation using DNA-binding proteins, small molecules that interact with these proteins, and segments of DNA that regulate the expression of the proteins. I introduce genetic process engineering, a methodology for modifying the DNA encoding of existing genetic elements to achieve the desired input/output behavior for constructing reliable circuits of significant complexity. I demonstrate the feasibility of digital computation in cells by building several operational in-vivo digital logic circuits, each composed of three gates that have been optimized by genetic process engineering.
 
(cont.) I also demonstrate engineered intercellular communications with programmed enzymatic activity and chemical diffusions to carry messages, using DNA from the Vibrio fischeri lux operon. The programmed communications is essential for obtaining coordinated behavior from cell aggregates. In addition to the above experimental contributions, I have developed BioSPICE, a prototype software tool for biocircuit design. It supports both static and dynamic simulations and analysis of single cell environments and small cell aggregates. Finally, I present the Microbial Colony Language (MCL), a model for programming cell aggregates. The language is expressive enough for interesting applications, yet relies on simple primitives that can be mapped to the engineered biological processes described above.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.
 
Includes bibliographical references (p. 130-138).
 
Date issued
2001
URI
http://hdl.handle.net/1721.1/8228
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Communications
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.