MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Latent Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification

Author(s)
Kim, Been; Rudin, Cynthia; Shah, Julie
Thumbnail
DownloadMIT-CSAIL-TR-2014-011.pdf (1.170Mb)
Other Contributors
Interactive Robotics Group
Advisor
Julie A Shah
Metadata
Show full item record
Abstract
We present a general framework for Bayesian case-based reasoning and prototype classification and clustering -- Latent Case Model (LCM). LCM learns the most representative prototype observations of a dataset by performing joint inference on cluster prototypes and features. Simultaneously, LCM pursues sparsity by learning subspaces, the sets of few features that play important roles in characterizing the prototypes. The prototype and subspace representation preserves interpretability in high dimensional data. We validate the approach preserves classification accuracy on standard data sets, and verify through human subject experiments that the output of LCM produces statistically significant improvements in participants' performance on a task requiring an understanding of clusters within a dataset.
Date issued
2014-05-26
URI
http://hdl.handle.net/1721.1/87548
Series/Report no.
MIT-CSAIL-TR-2014-011

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.