MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

PhD Thesis Proposal: Human-Machine Collaborative Optimization via Apprenticeship Scheduling

Author(s)
Gombolay, Matthew C.
Thumbnail
DownloadMIT-CSAIL-TR-2015-025.pdf (7.458Mb)
Other Contributors
Interactive Robotics Group
Advisor
Julie A Shah
Metadata
Show full item record
Abstract
Resource optimization in health care, manufacturing, and military operations requires the careful choreography of people and equipment to effectively fulfill the responsibilities of the profession. However, resource optimization is a computationally challenging problem, and poorly utilizing resources can have drastic consequences. Within these professions, there are human domain experts who are able to learn from experience to develop strategies, heuristics, and rules-of-thumb to effectively utilize the resources at their disposal. Manually codifying these heuristics within a computational tool is a laborious process and leaves much to be desired. Even with a codified set of heuristics, it is not clear how to best insert an autonomous decision-support system into the human decision-making process. The aim of this thesis is to develop an autonomous computational method for learning domain-expert heuristics from demonstration that can support the human decision-making process. We propose a new framework, called apprenticeship scheduling, which learns and embeds these heuristics within a scalable resource optimization algorithm for real-time decision-support. Our initial investigation, comprised of developing scalable methods for scheduling and studying shared control in human-machine collaborative resource optimization, inspires the development of our apprenticeship scheduling approach. We present a promising, initial prototype for learning heuristics from demonstration and outline a plan for our continuing work.
Date issued
2015-07-02
URI
http://hdl.handle.net/1721.1/97689
Series/Report no.
MIT-CSAIL-TR-2015-025

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.