MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prophet: Automatic Patch Generation via Learning from Successful Patches

Author(s)
Long, Fan; Rinard, Martin
Thumbnail
DownloadMIT-CSAIL-TR-2015-027.pdf (392.4Kb)
Other Contributors
Program Analysis and Compilation
Advisor
Martin Rinard
Metadata
Show full item record
Abstract
We present Prophet, a novel patch generation system that learns a probabilistic model over candidate patches from a database of past successful patches. Prophet defines the probabilistic model as the combination of a distribution over program points based on defect localization algorithms and a parametrized log-linear distribution over modification operations. It then learns the model parameters via maximum log-likelihood, which identifies important characteristics of the previous successful patches in the database. For a new defect, Prophet generates a search space that contains many candidate patches, applies the learned model to prioritize those potentially correct patches that are consistent with the identified successful patch characteristics, and then validates the candidate patches with a user supplied test suite. The experimental results indicate that these techniques enable Prophet to generate correct patches for 15 out of 69 real-world defects in eight open source projects. The previous state of the art generate and validate system, which uses a set of hand-code heuristics to prioritize the search, generates correct patches for 11 of these same 69 defects.
Date issued
2015-07-13
URI
http://hdl.handle.net/1721.1/97735
Series/Report no.
MIT-CSAIL-TR-2015-027

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.