MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks

Author(s)
Li, Haoyuan; Ghodsi, Ali; Shenker, Scott; Stoica, Ion; Zaharia, Matei A.
Thumbnail
DownloadZaharia_Tachyon.pdf (514.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Tachyon is a distributed file system enabling reliable data sharing at memory speed across cluster computing frameworks. While caching today improves read workloads, writes are either network or disk bound, as replication is used for fault-tolerance. Tachyon eliminates this bottleneck by pushing lineage, a well-known technique, into the storage layer. The key challenge in making a long-running lineage-based storage system is timely data recovery in case of failures. Tachyon addresses this issue by introducing a checkpointing algorithm that guarantees bounded recovery cost and resource allocation strategies for recomputation under commonly used resource schedulers. Our evaluation shows that Tachyon outperforms in-memory HDFS by 110x for writes. It also improves the end-to-end latency of a realistic workflow by 4x. Tachyon is open source and is deployed at multiple companies.
Date issued
2014-11
URI
http://hdl.handle.net/1721.1/101090
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the ACM Symposium on Cloud Computing (SOCC '14)
Publisher
Association for Computing Machinery (ACM)
Citation
Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. 2014. Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks. In Proceedings of the ACM Symposium on Cloud Computing (SOCC '14). ACM, New York, NY, USA, Article 6 , 15 pages.
Version: Author's final manuscript
ISBN
9781450332521

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.