MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres — A review

Author(s)
Ford Versypt, Ashlee N.; Pack, Daniel W.; Braatz, Richard D.
Thumbnail
DownloadBraatz_Mathematical modeling.pdf (571.6Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
PLGA microspheres are widely studied for controlled release drug delivery applications, and many models have been proposed to describe PLGA degradation and erosion and drug release from the bulk polymer. Autocatalysis is known to have a complex role in the dynamics of PLGA erosion and drug transport and can lead to size-dependent heterogeneities in otherwise uniformly bulk-eroding polymer microspheres. The aim of this review is to highlight mechanistic, mathematical models for drug release from PLGA microspheres that specifically address interactions between phenomena generally attributed to autocatalytic hydrolysis and mass transfer limitation effects. Predictions of drug release profiles by mechanistic models are useful for understanding mechanisms and designing drug release particles.
Date issued
2012-10
URI
http://hdl.handle.net/1721.1/101153
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Journal of Controlled Release
Publisher
Elsevier
Citation
Ford Versypt, Ashlee N., Daniel W. Pack, and Richard D. Braatz. “Mathematical Modeling of Drug Delivery from Autocatalytically Degradable PLGA Microspheres — A Review.” Journal of Controlled Release 165, no. 1 (January 2013): 29–37.
Version: Author's final manuscript
ISSN
01683659

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.