dc.contributor.author | Sessions, Alex L. | |
dc.contributor.author | Zhang, Lichun | |
dc.contributor.author | Welander, Paula V. | |
dc.contributor.author | Doughty, David | |
dc.contributor.author | Newman, Dianne K. | |
dc.contributor.author | Summons, Roger E | |
dc.date.accessioned | 2016-02-25T02:36:21Z | |
dc.date.available | 2016-02-25T02:36:21Z | |
dc.date.issued | 2012-12 | |
dc.date.submitted | 2012-12 | |
dc.identifier.issn | 01466380 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/101267 | |
dc.description.abstract | Hopanoids are triterpenoids produced mainly by bacteria, are ubiquitous in the environment, and have many important applications as biological markers. A wide variety of related hopanoid structures exists, many of which are polyfunctionalized. These modifications render the hopanoids too involatile for conventional gas chromatography (GC) separation, so require either laborious oxidative cleavage of the functional groups or specialized high temperature (HT) columns. Here we describe the systematic evaluation and optimization of a HT–GC method for the analysis of polyfunctionalized hopanoids and their methylated homologs. Total lipid extracts are derivatized with acetic anhydride and no further treatment or workup is required. We show that acid or base hydrolysis to remove di- and triacylglycerides leads to degradation of several BHP structures. DB-XLB type columns can elute hopanoids up to bacteriohopanetetrol at 350 °C, with baseline separation of all 2-methyl/desmethyl homologs. DB-5HT type columns can additionally elute bacteriohopaneaminotriol and bacteriohopaneaminotetrol, but do not fully separate 2-methyl/desmethyl homologs. The method gave 2- to 7-fold higher recovery of hopanoids than oxidative cleavage and can provide accurate quantification of all analytes including 2-methyl hopanoids. By comparing data from mass spectra with those from a flame ionization detector, we show that the mass spectromet (MS) response factors for different hopanoids using either total ion counts or m/z 191 vary substantially. Similarly, 2-methyl ratios estimated from selected-ion data are lower than those from FID by 10–30% for most hopanoids, but higher by ca. 10% for bacteriohopanetetrol. Mass spectra for a broad suite of hopanoids, including 2-methyl homologs, from Rhodopseudomonas palustris are presented, together with the tentative assignment of several new hopanoid degradation products. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.). Program on Emerging Trends in Biogeochemical Cycles (Grant OCE-0849940) | en_US |
dc.description.sponsorship | NASA Astrobiology Institute | en_US |
dc.description.sponsorship | United States. National Aeronautics and Space Administration (Postdoctoral Fellowship) | en_US |
dc.language.iso | en_US | |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.orggeochem.2012.12.009 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-NoDerivatives | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
dc.source | PMC | en_US |
dc.title | Identification and quantification of polyfunctionalized hopanoids by high temperature gas chromatography–mass spectrometry | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Sessions, Alex L., Lichun Zhang, Paula V. Welander, David Doughty, Roger E. Summons, and Dianne K. Newman. “Identification and Quantification of Polyfunctionalized Hopanoids by High Temperature Gas Chromatography–mass Spectrometry.” Organic Geochemistry 56 (March 2013): 120–130. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences | en_US |
dc.contributor.mitauthor | Welander, Paula V. | en_US |
dc.contributor.mitauthor | Summons, Roger Everett | en_US |
dc.relation.journal | Organic Geochemistry | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Sessions, Alex L.; Zhang, Lichun; Welander, Paula V.; Doughty, David; Summons, Roger E.; Newman, Dianne K. | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-7144-8537 | |
mit.license | PUBLISHER_CC | en_US |