Show simple item record

dc.contributor.authorGauci, Stephanie J.
dc.contributor.authorFrank, Eliot
dc.contributor.authorFosang, Amanda J.
dc.contributor.authorOrtiz, Christine
dc.contributor.authorGrodzinsky, Alan J.
dc.contributor.authorTavakoli Nia, Hadi
dc.contributor.authorAzadi Sohi, Mojtaba
dc.contributor.authorHung, Han-Hwa K.
dc.date.accessioned2016-04-01T15:05:47Z
dc.date.available2016-04-01T15:05:47Z
dc.date.issued2014-11
dc.identifier.issn00219290
dc.identifier.urihttp://hdl.handle.net/1721.1/102071
dc.description.abstractMurine models of osteoarthritis (OA) and post-traumatic OA have been widely used to study the development and progression of these diseases using genetically engineered mouse strains along with surgical or biochemical interventions. However, due to the small size and thickness of murine cartilage, the relationship between mechanical properties, molecular structure and cartilage composition has not been well studied. We adapted a recently developed AFM-based nano-rheology system to probe the dynamic nanomechanical properties of murine cartilage over a wide frequency range of 1 Hz to 10 kHz, and studied the role of glycosaminoglycan (GAG) on the dynamic modulus and poroelastic properties of murine femoral cartilage. We showed that poroelastic properties, highlighting fluid–solid interactions, are more sensitive indicators of loss of mechanical function compared to equilibrium properties in which fluid flow is negligible. These fluid-flow-dependent properties include the hydraulic permeability (an indicator of the resistance of matrix to fluid flow) and the high frequency modulus, obtained at high rates of loading relevant to jumping and impact injury in vivo. Utilizing a fibril-reinforced finite element model, we estimated the poroelastic properties of mouse cartilage over a wide range of loading rates for the first time, and show that the hydraulic permeability increased by a factor ~16 from k[subscript normal] = 7.80 × 10[superscript −16] ± 1.3 × 10[superscript −16] m[superscript 4]/N s to k[subscript GAG-depleted] = 1.26 × 10[superscript −14] ± 6.73 × 10[superscript −15] m[superscript 4]/N s after GAG depletion. The high-frequency modulus, which is related to fluid pressurization and the fibrillar network, decreased significantly after GAG depletion. In contrast, the equilibrium modulus, which is fluid-flow independent, did not show a statistically significant alteration following GAG depletion.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 060331)en_US
dc.description.sponsorshipWhitaker Foundation (Health Sciences Fund Fellowship)en_US
dc.description.sponsorshipArthritis Australiaen_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jbiomech.2014.11.012en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleHigh-bandwidth AFM-based rheology is a sensitive indicator of early cartilage aggrecan degradation relevant to mouse models of osteoarthritisen_US
dc.typeArticleen_US
dc.identifier.citationNia, Hadi T., Stephanie J. Gauci, Mojtaba Azadi, Han-Hwa Hung, Eliot Frank, Amanda J. Fosang, Christine Ortiz, and Alan J. Grodzinsky. “High-Bandwidth AFM-Based Rheology Is a Sensitive Indicator of Early Cartilage Aggrecan Degradation Relevant to Mouse Models of Osteoarthritis.” Journal of Biomechanics 48, no. 1 (January 2015): 162–165.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Biomedical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorTavakoli Nia, Hadien_US
dc.contributor.mitauthorAzadi Sohi, Mojtabaen_US
dc.contributor.mitauthorHung, Han-Hwa K.en_US
dc.contributor.mitauthorFrank, Elioten_US
dc.contributor.mitauthorOrtiz, Christineen_US
dc.contributor.mitauthorGrodzinsky, Alan J.en_US
dc.relation.journalJournal of Biomechanicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsNia, Hadi T.; Gauci, Stephanie J.; Azadi, Mojtaba; Hung, Han-Hwa; Frank, Eliot; Fosang, Amanda J.; Ortiz, Christine; Grodzinsky, Alan J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3511-5679
dc.identifier.orcidhttps://orcid.org/0000-0003-1970-9901
dc.identifier.orcidhttps://orcid.org/0000-0002-4942-3456
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record