Show simple item record

dc.contributor.authorWu, Wei
dc.contributor.authorChen, Zhe
dc.contributor.authorGao, Shangkai
dc.contributor.authorBrown, Emery N.
dc.date.accessioned2016-04-04T23:10:37Z
dc.date.available2016-04-04T23:10:37Z
dc.date.issued2011-03
dc.date.submitted2011-03
dc.identifier.issn10538119
dc.identifier.issn1095-9572
dc.identifier.urihttp://hdl.handle.net/1721.1/102159
dc.description.abstractMultichannel electroencephalography (EEG) offers a non-invasive tool to explore spatio-temporal dynamics of brain activity. With EEG recordings consisting of multiple trials, traditional signal processing approaches that ignore inter-trial variability in the data may fail to accurately estimate the underlying spatio-temporal brain patterns. Moreover, precise characterization of such inter-trial variability per se can be of high scientific value in establishing the relationship between brain activity and behavior. In this paper, a statistical modeling framework is introduced for learning spatio-temporal decompositions of multiple-trial EEG data recorded under two contrasting experimental conditions. By modeling the variance of source signals as random variables varying across trials, the proposed two-stage hierarchical Bayesian model is able to capture inter-trial amplitude variability in the data in a sparse way where a parsimonious representation of the data can be obtained. A variational Bayesian (VB) algorithm is developed for statistical inference of the hierarchical model. The efficacy of the proposed modeling framework is validated with the analysis of both synthetic and real EEG data. In the simulation study we show that even at low signal-to-noise ratios our approach is able to recover with high precision the underlying spatio-temporal patterns and the dynamics of source amplitude across trials; on two brain–computer interface (BCI) data sets we show that our VB algorithm can extract physiologically meaningful spatio-temporal patterns and make more accurate predictions than other two widely used algorithms: the common spatial patterns (CSP) algorithm and the Infomax algorithm for independent component analysis (ICA). The results demonstrate that our statistical modeling framework can serve as a powerful tool for extracting brain patterns, characterizing trial-to-trial brain dynamics, and decoding brain states by exploiting useful structures in the data.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DP1-OD003646-01)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01-EB006385-01)en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (Grant 30630022)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.neuroimage.2011.03.032en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleA hierarchical Bayesian approach for learning sparse spatio-temporal decompositions of multichannel EEGen_US
dc.typeArticleen_US
dc.identifier.citationWu, Wei, Zhe Chen, Shangkai Gao, and Emery N. Brown. “A Hierarchical Bayesian Approach for Learning Sparse Spatio-Temporal Decompositions of Multichannel EEG.” NeuroImage 56, no. 4 (June 2011): 1929–1945.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.mitauthorWu, Weien_US
dc.contributor.mitauthorChen, Zheen_US
dc.contributor.mitauthorBrown, Emery N.en_US
dc.relation.journalNeuroImageen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWu, Wei; Chen, Zhe; Gao, Shangkai; Brown, Emery N.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2668-7819
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record