Show simple item record

dc.contributor.authorUeland, Stian M.
dc.contributor.authorSchuh, Christopher A.
dc.date.accessioned2016-05-03T13:15:51Z
dc.date.available2016-05-03T13:15:51Z
dc.date.issued2011-10
dc.date.submitted2011-09
dc.identifier.issn13596454
dc.identifier.issn1873-2453
dc.identifier.urihttp://hdl.handle.net/1721.1/102372
dc.description.abstractIn oligocrystalline shape memory alloys, the total grain boundary area is smaller than the surface area of the specimen, leading to significant effects of free surfaces on the martensitic transformation and related shape memory and superelastic properties. Here we study sample size effects upon the superelastic characteristics of oligocrystalline microwires after one loading cycle and after many. Cu–Zn–Al wires with diameters ranging from ∼100 down to ∼20 μm are fabricated by the Taylor liquid processing technique and characterized through both uniaxial cyclic tensile testing and mechanically constrained thermal cycling. The energy dissipated per superelastic cycle increases with decreasing wire diameter, and this size effect is preserved after extensive cycling despite a significant transient evolution of the superelastic response for early cycles. We also present fatigue and fracture data, indicating that oligocrystalline wires of this normally brittle alloy can exhibit fatigue lifetimes two orders of magnitude improved over conventional polycrystalline Cu–Zn–Al.en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Institute for Soldier Nanotechnologiesen_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.actamat.2011.09.054en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceProf. Schuh via Angie Locknaren_US
dc.titleSuperelasticity and fatigue in oligocrystalline shape memory alloy microwiresen_US
dc.typeArticleen_US
dc.identifier.citationUeland, Stian M., and Christopher A. Schuh. “Superelasticity and Fatigue in Oligocrystalline Shape Memory Alloy Microwires.” Acta Materialia 60, no. 1 (January 2012): 282–292.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.approverSchuh, Christopher A.en_US
dc.contributor.mitauthorUeland, Stian M.en_US
dc.contributor.mitauthorSchuh, Christopher A.en_US
dc.relation.journalActa Materialiaen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsUeland, Stian M.; Schuh, Christopher A.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9856-2682
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record