Show simple item record

dc.contributor.authorMukovskiy, Albert
dc.contributor.authorSlotine, Jean-Jacques E.
dc.contributor.authorGiese, Martin A.
dc.date.accessioned2016-08-08T20:40:30Z
dc.date.available2016-08-08T20:40:30Z
dc.date.issued2012-08
dc.date.submitted2012-07
dc.identifier.issn18777503
dc.identifier.urihttp://hdl.handle.net/1721.1/103869
dc.description.abstractThe synthesis of realistic complex body movements in real-time is a difficult problem in computer graphics and in robotics. High realism requires the accurate modeling of the details of the trajectories for a large number of degrees of freedom. At the same time, real-time animation necessitates flexible systems that can adapt and react in an online fashion to changing external constraints. Such behaviors can be modeled with nonlinear dynamical systems in combination with appropriate learning methods. The resulting mathematical models have manageable mathematical complexity, allowing to study and design the dynamics of multi-agent systems. We introduce Contraction Theory as a tool to treat the stability properties of such highly nonlinear systems. For a number of scenarios we derive conditions that guarantee the global stability and minimal convergence rates for the formation of coordinated behaviors of crowds. In this way we suggest a new approach for the analysis and design of stable collective behaviors in crowd simulation.en_US
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG Forschergruppe ‘Perceptual Graphics’ (GZ: GI 305/2-2))en_US
dc.description.sponsorshipEuropean Commission (EC FP7 project FP7-ICT-248311 ‘AMARSi’)en_US
dc.description.sponsorshipEuropean Commission (FP7- ICT-249858 ‘TANGO’)en_US
dc.description.sponsorshipHermann und Lilly Schilling-Stiftungen_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jocs.2012.08.019en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceOther univ. web domainen_US
dc.titleDynamically stable control of articulated crowdsen_US
dc.typeArticleen_US
dc.identifier.citationMukovskiy, Albert, Jean-Jacques E. Slotine, and Martin A. Giese. “Dynamically Stable Control of Articulated Crowds.” Journal of Computational Science 4, no. 4 (July 2013): 304–310.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorSlotine, Jean-Jacques E.en_US
dc.relation.journalJournal of Computational Scienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMukovskiy, Albert; Slotine, Jean-Jacques E.; Giese, Martin A.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7161-7812
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record