A model-data weak formulation for simultaneous estimation of state and model bias
Author(s)
Yano, Masayuki; Penn, James Douglass; Patera, Anthony T.
DownloadPatera_A model-data.pdf (276.2Kb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Alternative title
A model-data weak formulation for simultaneous estimation of state and model bias Estimation de la variable dʼétat et du biais de modèle par une formulation faible incorporant les données
Terms of use
Metadata
Show full item recordAbstract
We introduce a Petrov–Galerkin regularized saddle approximation which incorporates a “model” (partial differential equation) and “data” (M experimental observations) to yield estimates for both state and model bias. We provide an a priori theory that identifies two distinct contributions to the reduction in the error in state as a function of the number of observations, M: the stability constant increases with M; the model-bias best-fit error decreases with M. We present results for a synthetic Helmholtz problem and an actual acoustics system.
Date issued
2013-11Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Comptes Rendus Mathematique
Publisher
Elsevier
Citation
Yano, Masayuki, James D. Penn, and Anthony T. Patera. “A Model-Data Weak Formulation for Simultaneous Estimation of State and Model Bias.” Comptes Rendus Mathematique 351, no. 23–24 (December 2013): 937–941.
Version: Original manuscript
ISSN
1631073X