Show simple item record

dc.contributor.authorDellʼAmbrogio, Ivo
dc.contributor.authorTrigo Neri Tabuada, Goncalo Jo
dc.date.accessioned2016-08-24T18:01:26Z
dc.date.available2016-08-24T18:01:26Z
dc.date.issued2013-10
dc.date.submitted2012-12
dc.identifier.issn00218693
dc.identifier.urihttp://hdl.handle.net/1721.1/103964
dc.description.abstractIn this article we establish the foundations of the Morita homotopy theory of C*-categories. Concretely, we construct a cofibrantly generated simplicial symmetric monoidal Quillen model structure (denoted by M[subscript Mor]) on the category C1*cat of small unital C*-categories. The weak equivalences are the Morita equivalences and the cofibrations are the *-functors which are injective on objects. As an application, we obtain an elegant description of Brown–Green–Rieffelʼs Picard group in the associated homotopy category Ho(M[subscript Mor]). We then prove that Ho(M[subscript Mor]) is semi-additive. By group completing the induced abelian monoid structure at each Hom-set we obtain an additive category Ho(M[subscript Mor])[superscript −1] and a composite functor C1*cat→Ho(M[subscript Mor][superscript −1] which is characterized by two simple properties: inversion of Morita equivalences and preservation of all finite products. Finally, we prove that the classical Grothendieck group functor becomes co-represented in Ho(M[subscript Mor])[superscript −1] by the tensor unit object.en_US
dc.description.sponsorshipNEC Corporation (NEC Award 2742738)en_US
dc.description.sponsorshipFundação para a Ciência e a Tecnologia (Portugal) (PEst-OE/MAT/UI0297/2011)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jalgebra.2013.09.022en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleMorita homotopy theory of C*-categoriesen_US
dc.typeArticleen_US
dc.identifier.citationDellʼAmbrogio, Ivo, and Gonçalo Tabuada. "Morita homotopy theory of C*-categories." Journal of Algebra 398 (January 2014): 162–199.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorTrigo Neri Tabuada, Goncalo Joen_US
dc.relation.journalJournal of Algebraen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5558-9236
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record