dc.contributor.author | DellʼAmbrogio, Ivo | |
dc.contributor.author | Trigo Neri Tabuada, Goncalo Jo | |
dc.date.accessioned | 2016-08-24T18:01:26Z | |
dc.date.available | 2016-08-24T18:01:26Z | |
dc.date.issued | 2013-10 | |
dc.date.submitted | 2012-12 | |
dc.identifier.issn | 00218693 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/103964 | |
dc.description.abstract | In this article we establish the foundations of the Morita homotopy theory of C*-categories. Concretely, we construct a cofibrantly generated simplicial symmetric monoidal Quillen model structure (denoted by M[subscript Mor]) on the category C1*cat of small unital C*-categories. The weak equivalences are the Morita equivalences and the cofibrations are the *-functors which are injective on objects. As an application, we obtain an elegant description of Brown–Green–Rieffelʼs Picard group in the associated homotopy category Ho(M[subscript Mor]). We then prove that Ho(M[subscript Mor]) is semi-additive. By group completing the induced abelian monoid structure at each Hom-set we obtain an additive category Ho(M[subscript Mor])[superscript −1] and a composite functor C1*cat→Ho(M[subscript Mor][superscript −1] which is characterized by two simple properties: inversion of Morita equivalences and preservation of all finite products. Finally, we prove that the classical Grothendieck group functor becomes co-represented in Ho(M[subscript Mor])[superscript −1] by the tensor unit object. | en_US |
dc.description.sponsorship | NEC Corporation (NEC Award 2742738) | en_US |
dc.description.sponsorship | Fundação para a Ciência e a Tecnologia (Portugal) (PEst-OE/MAT/UI0297/2011) | en_US |
dc.language.iso | en_US | |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.jalgebra.2013.09.022 | en_US |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs License | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Morita homotopy theory of C*-categories | en_US |
dc.type | Article | en_US |
dc.identifier.citation | DellʼAmbrogio, Ivo, and Gonçalo Tabuada. "Morita homotopy theory of C*-categories." Journal of Algebra 398 (January 2014): 162–199. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Trigo Neri Tabuada, Goncalo Jo | en_US |
dc.relation.journal | Journal of Algebra | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0001-5558-9236 | |
mit.license | PUBLISHER_CC | en_US |