Show simple item record

dc.contributor.authorGaston, Derek R.
dc.contributor.authorPermann, Cody J.
dc.contributor.authorPeterson, John W.
dc.contributor.authorSlaughter, Andrew E.
dc.contributor.authorAndrš, David
dc.contributor.authorWang, Yaqi
dc.contributor.authorPerez, Danielle M.
dc.contributor.authorTonks, Michael R.
dc.contributor.authorOrtensi, Javier
dc.contributor.authorZou, Ling
dc.contributor.authorMartineau, Richard C.
dc.contributor.authorShort, Michael P
dc.date.accessioned2016-11-17T23:43:47Z
dc.date.available2016-11-17T23:43:47Z
dc.date.issued2014-11
dc.date.submitted2014-02
dc.identifier.issn03064549
dc.identifier.urihttp://hdl.handle.net/1721.1/105356
dc.description.abstractNumerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different data exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle.en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.description.sponsorshipIdaho National Laboratory (Contract DE-AC07-05ID14517)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.anucene.2014.09.060en_US
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 3.0en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceElsevieren_US
dc.titlePhysics-based multiscale coupling for full core nuclear reactor simulationen_US
dc.typeArticleen_US
dc.identifier.citationGaston, Derek R. et al. “Physics-Based Multiscale Coupling for Full Core Nuclear Reactor Simulation.” Annals of Nuclear Energy 84 (2015): 45–54.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorShort, Michael P
dc.relation.journalAnnals of Nuclear Energyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsGaston, Derek R.; Permann, Cody J.; Peterson, John W.; Slaughter, Andrew E.; Andrš, David; Wang, Yaqi; Short, Michael P.; Perez, Danielle M.; Tonks, Michael R.; Ortensi, Javier; Zou, Ling; Martineau, Richard C.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9216-2482
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record