dc.contributor.author | Jarosz, Daniel F. | |
dc.contributor.author | Walker, Gordon A. | |
dc.contributor.author | Ung, W. Lloyd | |
dc.contributor.author | Lancaster, Alex K. | |
dc.contributor.author | Rotem, Assaf | |
dc.contributor.author | Weitz, David A. | |
dc.contributor.author | Bisson, Linda F. | |
dc.contributor.author | Brown, Jessica Conrad | |
dc.contributor.author | Lindquist, Susan | |
dc.contributor.author | Datta, Manoshi Sen | |
dc.contributor.author | Chang, Amelia N. | |
dc.contributor.author | Newby, Gregory Arthur | |
dc.date.accessioned | 2016-12-05T20:40:34Z | |
dc.date.available | 2016-12-05T20:40:34Z | |
dc.date.issued | 2014-08 | |
dc.date.submitted | 2014-04 | |
dc.identifier.issn | 00928674 | |
dc.identifier.issn | 1097-4172 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/105722 | |
dc.description.abstract | In experimental science, organisms are usually studied in isolation, but in the wild they compete and cooperate in complex communities. We report a system for cross-kingdom communication by which bacteria heritably transform yeast metabolism. An ancient biological circuit blocks yeast
from using other carbon sources in the presence of glucose. [GAR[superscript +]], a protein-based epigenetic element, allows yeast to circumvent this glucose repression and use multiple carbon sources in the presence of glucose. Some bacteria secrete a chemical factor that induces [GAR[superscript +]]. [GAR[superscript +]] is advantageous to bacteria because yeast cells make less ethanol, and is advantageous to yeast because their growth and long-term viability is improved in complex carbon sources. This crosskingdom communication is broadly conserved, providing a compelling argument for its adaptive value. By heritably transforming growth and survival strategies in response to the selective pressures of life in a biological community, [GAR[superscript +]] presents a unique example of Lamarckian inheritance. | en_US |
dc.description.sponsorship | G. Harold and Leila Y. Mathers Foundation | en_US |
dc.description.sponsorship | Howard Hughes Medical Institute | en_US |
dc.language.iso | en_US | |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.cell.2014.07.025 | en_US |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs License | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
dc.source | PMC | en_US |
dc.title | Cross-Kingdom Chemical Communication Drives a Heritable, Mutually Beneficial Prion-Based Transformation of Metabolism | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Jarosz, Daniel F. et al. “Cross-Kingdom Chemical Communication Drives a Heritable, Mutually Beneficial Prion-Based Transformation of Metabolism.” Cell 158.5 (2014): 1083–1093. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computational and Systems Biology Program | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Biology | en_US |
dc.contributor.mitauthor | Brown, Jessica Conrad | |
dc.contributor.mitauthor | Lindquist, Susan | |
dc.contributor.mitauthor | Datta, Manoshi Sen | |
dc.contributor.mitauthor | Chang, Amelia N. | |
dc.contributor.mitauthor | Newby, Gregory Arthur | |
dc.relation.journal | Cell | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Jarosz, Daniel F.; Brown, Jessica C.S.; Walker, Gordon A.; Datta, Manoshi S.; Ung, W. Lloyd; Lancaster, Alex K.; Rotem, Assaf; Chang, Amelia; Newby, Gregory A.; Weitz, David A.; Bisson, Linda F.; Lindquist, Susan | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-1307-882X | |
dc.identifier.orcid | https://orcid.org/0000-0001-6843-9843 | |
dc.identifier.orcid | https://orcid.org/0000-0002-1999-0169 | |
mit.license | PUBLISHER_CC | en_US |
mit.metadata.status | Complete | |