Show simple item record

dc.contributor.authorJarosz, Daniel F.
dc.contributor.authorWalker, Gordon A.
dc.contributor.authorUng, W. Lloyd
dc.contributor.authorLancaster, Alex K.
dc.contributor.authorRotem, Assaf
dc.contributor.authorWeitz, David A.
dc.contributor.authorBisson, Linda F.
dc.contributor.authorBrown, Jessica Conrad
dc.contributor.authorLindquist, Susan
dc.contributor.authorDatta, Manoshi Sen
dc.contributor.authorChang, Amelia N.
dc.contributor.authorNewby, Gregory Arthur
dc.date.accessioned2016-12-05T20:40:34Z
dc.date.available2016-12-05T20:40:34Z
dc.date.issued2014-08
dc.date.submitted2014-04
dc.identifier.issn00928674
dc.identifier.issn1097-4172
dc.identifier.urihttp://hdl.handle.net/1721.1/105722
dc.description.abstractIn experimental science, organisms are usually studied in isolation, but in the wild they compete and cooperate in complex communities. We report a system for cross-kingdom communication by which bacteria heritably transform yeast metabolism. An ancient biological circuit blocks yeast from using other carbon sources in the presence of glucose. [GAR[superscript +]], a protein-based epigenetic element, allows yeast to circumvent this glucose repression and use multiple carbon sources in the presence of glucose. Some bacteria secrete a chemical factor that induces [GAR[superscript +]]. [GAR[superscript +]] is advantageous to bacteria because yeast cells make less ethanol, and is advantageous to yeast because their growth and long-term viability is improved in complex carbon sources. This crosskingdom communication is broadly conserved, providing a compelling argument for its adaptive value. By heritably transforming growth and survival strategies in response to the selective pressures of life in a biological community, [GAR[superscript +]] presents a unique example of Lamarckian inheritance.en_US
dc.description.sponsorshipG. Harold and Leila Y. Mathers Foundationen_US
dc.description.sponsorshipHoward Hughes Medical Instituteen_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.cell.2014.07.025en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleCross-Kingdom Chemical Communication Drives a Heritable, Mutually Beneficial Prion-Based Transformation of Metabolismen_US
dc.typeArticleen_US
dc.identifier.citationJarosz, Daniel F. et al. “Cross-Kingdom Chemical Communication Drives a Heritable, Mutually Beneficial Prion-Based Transformation of Metabolism.” Cell 158.5 (2014): 1083–1093.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computational and Systems Biology Programen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.mitauthorBrown, Jessica Conrad
dc.contributor.mitauthorLindquist, Susan
dc.contributor.mitauthorDatta, Manoshi Sen
dc.contributor.mitauthorChang, Amelia N.
dc.contributor.mitauthorNewby, Gregory Arthur
dc.relation.journalCellen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsJarosz, Daniel F.; Brown, Jessica C.S.; Walker, Gordon A.; Datta, Manoshi S.; Ung, W. Lloyd; Lancaster, Alex K.; Rotem, Assaf; Chang, Amelia; Newby, Gregory A.; Weitz, David A.; Bisson, Linda F.; Lindquist, Susanen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1307-882X
dc.identifier.orcidhttps://orcid.org/0000-0001-6843-9843
dc.identifier.orcidhttps://orcid.org/0000-0002-1999-0169
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record