Show simple item record

dc.contributor.authorRaychowdhury, Raktima
dc.contributor.authorJovanovic, Marko
dc.contributor.authorStumpo, Deborah J.
dc.contributor.authorPauli, Andrea
dc.contributor.authorHacohen, Nir
dc.contributor.authorSchier, Alexander F.
dc.contributor.authorBlackshear, Perry J.
dc.contributor.authorFriedman, Nir
dc.contributor.authorAmit, Ido
dc.contributor.authorRabani, Michal
dc.contributor.authorRooney, Michael Steven
dc.contributor.authorRegev, Aviv
dc.date.accessioned2016-12-07T14:27:04Z
dc.date.available2016-12-07T14:27:04Z
dc.date.issued2014-12
dc.date.submitted2014-09
dc.identifier.issn00928674
dc.identifier.urihttp://hdl.handle.net/1721.1/105734
dc.description.abstractCells control dynamic transitions in transcript levels by regulating transcription, processing, and/or degradation through an integrated regulatory strategy. Here, we combine RNA metabolic labeling, rRNA-depleted RNA-seq, and DRiLL, a novel computational framework, to quantify the level; editing sites; and transcription, processing, and degradation rates of each transcript at a splice junction resolution during the LPS response of mouse dendritic cells. Four key regulatory strategies, dominated by RNA transcription changes, generate most temporal gene expression patterns. Noncanonical strategies that also employ dynamic posttranscriptional regulation control only a minority of genes, but provide unique signal processing features. We validate Tristetraprolin (TTP) as a major regulator of RNA degradation in one noncanonical strategy. Applying DRiLL to the regulation of noncoding RNAs and to zebrafish embryogenesis demonstrates its broad utility. Our study provides a new quantitative approach to discover transcriptional and posttranscriptional events that control dynamic changes in transcript levels using RNA sequencing data.en_US
dc.description.sponsorshipNational Human Genome Research Institute (U.S.) (Centers for Excellence in Genomics Science 1P50HG006193-01)en_US
dc.description.sponsorshipHoward Hughes Medical Instituteen_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Pioneer Award)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. William Asbjornsen Albert Memorial Fellowshipen_US
dc.description.sponsorshipXerox Fellowship Programen_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.cell.2014.11.015en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleHigh-Resolution Sequencing and Modeling Identifies Distinct Dynamic RNA Regulatory Strategiesen_US
dc.typeArticleen_US
dc.identifier.citationRabani, Michal et al. “High-Resolution Sequencing and Modeling Identifies Distinct Dynamic RNA Regulatory Strategies.” Cell 159.7 (2014): 1698–1710.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorRabani, Michal
dc.contributor.mitauthorRooney, Michael Steven
dc.contributor.mitauthorRegev, Aviv
dc.relation.journalCellen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRabani, Michal; Raychowdhury, Raktima; Jovanovic, Marko; Rooney, Michael; Stumpo, Deborah J.; Pauli, Andrea; Hacohen, Nir; Schier, Alexander F.; Blackshear, Perry J.; Friedman, Nir; Amit, Ido; Regev, Aviven_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8567-2049
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record