Show simple item record

dc.contributor.authorLiebenau, Anita
dc.contributor.authorPerson, Yury
dc.contributor.authorSzabó, Tibor
dc.contributor.authorFox, Jacob
dc.contributor.authorGrinshpun, Andrey Vadim
dc.date.accessioned2017-01-05T18:50:13Z
dc.date.available2017-01-05T18:50:13Z
dc.date.issued2014-07
dc.date.submitted2013-11
dc.identifier.issn00958956
dc.identifier.urihttp://hdl.handle.net/1721.1/106207
dc.description.abstractA graph G is Ramsey for H if every two-colouring of the edges of G contains a monochromatic copy of H. Two graphs H and H′ are Ramsey-equivalent if every graph G is Ramsey for H if and only if it is Ramsey for H′. In this paper, we study the problem of determining which graphs are Ramsey-equivalent to the complete graph K[subscript k]. A famous theorem of Nešetřil and Rödl implies that any graph H which is Ramsey-equivalent to K[subscript k] must contain K[subscript k]. We prove that the only connected graph which is Ramsey-equivalent to K[subscript k] is itself. This gives a negative answer to the question of Szabó, Zumstein, and Zürcher on whether K[subscript k] is Ramsey-equivalent to K[subscript k]⋅K[subscript 2], the graph on k+1 vertices consisting of K[subscript k] with a pendent edge. In fact, we prove a stronger result. A graph G is Ramsey minimal for a graph H if it is Ramsey for H but no proper subgraph of G is Ramsey for H. Let s(H) be the smallest minimum degree over all Ramsey minimal graphs for H . The study of s(H) was introduced by Burr, Erdős, and Lovász, where they show that s(K[subscript k])=(k−1)[superscript 2]. We prove that s(K[subscript k]⋅K[subscript 2])=k−1, and hence K[subscript k] and K[subscript k]⋅K[subscript 2] are not Ramsey-equivalent. We also address the question of which non-connected graphs are Ramsey-equivalent to K[subscript k]. Let f(k,t) be the maximum f such that the graph H=K[subscript k]+fK[subscript t], consisting of K[subscript k] and f disjoint copies of K[subscript t], is Ramsey-equivalent to K[subscript k]. Szabó, Zumstein, and Zürcher gave a lower bound on f(k,t). We prove an upper bound on f(k,t) which is roughly within a factor 2 of the lower bound.en_US
dc.description.sponsorshipDavid & Lucile Packard Foundation (Fellowship)en_US
dc.description.sponsorshipAlfred P. Sloan Foundation (Fellowship)en_US
dc.description.sponsorshipSimons Foundation (Fellowship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1069197)en_US
dc.description.sponsorshipNEC Corporation (MIT Award)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jctb.2014.06.003en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleWhat is Ramsey-equivalent to a clique?en_US
dc.typeArticleen_US
dc.identifier.citationFox, Jacob et al. “What Is Ramsey-Equivalent to a Clique?” Journal of Combinatorial Theory, Series B 109 (2014): 120–133.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorFox, Jacob
dc.contributor.mitauthorGrinshpun, Andrey Vadim
dc.relation.journalJournal of Combinatorial Theory, Series Ben_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsFox, Jacob; Grinshpun, Andrey; Liebenau, Anita; Person, Yury; Szabó, Tiboren_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record