Show simple item record

dc.contributor.authorLuders, Brandon Douglas
dc.contributor.authorFerguson, Sarah K.
dc.contributor.authorGrande, Robert Conlin
dc.contributor.authorHow, Jonathan P
dc.date.accessioned2017-01-09T20:27:22Z
dc.date.available2017-01-09T20:27:22Z
dc.date.issued2015-04
dc.date.submitted2014-05
dc.identifier.isbn978-3-319-16594-3
dc.identifier.isbn978-3-319-16595-0
dc.identifier.issn1610-7438
dc.identifier.issn1610-742X
dc.identifier.urihttp://hdl.handle.net/1721.1/106305
dc.description.abstractTo plan safe trajectories in urban environments, autonomous vehicles must be able to quickly assess the future intentions of dynamic agents. Pedestrians are particularly challenging to model, as their motion patterns are often uncertain and/or unknown a priori. This paper presents a novel changepoint detection and clustering algorithm that, when coupled with offline unsupervised learning of a Gaussian process mixture model (DPGP), enables quick detection of changes in intent and online learning of motion patterns not seen in prior training data. The resulting long-term movement predictions demonstrate improved accuracy relative to offline learning alone, in terms of both intent and trajectory prediction. By embedding these predictions within a chance-constrained motion planner, trajectories which are probabilistically safe to pedestrian motions can be identified in real-time. Hardware experiments demonstrate that this approach can accurately predict motion patterns from onboard sensor/perception data and facilitate robust navigation within a dynamic environment.en_US
dc.description.sponsorshipFord Motor Companyen_US
dc.language.isoen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-16595-0_10en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleReal-Time Predictive Modeling and Robust Avoidance of Pedestrians with Uncertain, Changing Intentionsen_US
dc.typeArticleen_US
dc.identifier.citationFerguson, Sarah et al. “Real-Time Predictive Modeling and Robust Avoidance of Pedestrians with Uncertain, Changing Intentions.” Algorithmic Foundations of Robotics XI. Ed. H. Levent Akin et al. Vol. 107. Cham: Springer International Publishing, 2015. 161–177.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Aerospace Controls Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorLuders, Brandon Douglas
dc.contributor.mitauthorFerguson, Sarah K.
dc.contributor.mitauthorGrande, Robert Conlin
dc.contributor.mitauthorHow, Jonathan P
dc.relation.journalSpringer Tracts in Advanced Roboticsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsFerguson, Sarah; Luders, Brandon; Grande, Robert C.; How, Jonathan P.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8576-1930
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record