Show simple item record

dc.contributor.authorHong, Jongsup
dc.contributor.authorKirchen, Patrick
dc.contributor.authorGhoniem, Ahmed F.
dc.contributor.authorGhoniem, Ahmed F
dc.date.accessioned2017-08-21T15:22:57Z
dc.date.available2017-08-21T15:22:57Z
dc.date.issued2015-04
dc.date.submitted2015-03
dc.identifier.issn0376-7388
dc.identifier.urihttp://hdl.handle.net/1721.1/110991
dc.description.abstractThe effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors, thermochemical reactions take place in the gas-phase and on the membrane surface, both of which interact with oxygen permeation. However, this coupling between gas-phase and surface chemistry has not been examined in detail. In this study, a parametric analysis using numerical simulations is conducted to investigate this coupling and its impact on fuel conversion and oxygen permeation rates. A thermochemical model that incorporates heterogeneous chemistry on the membrane surface and detailed chemical kinetics in the gas-phase is used. Results show that fuel conversion and oxygen permeation are strongly influenced by the simultaneous action of both chemistries. It is shown that the coupling somewhat suppresses the gas-phase kinetics and reduces fuel conversion, both attributed to extensive thermal energy transfer towards the membrane which conducts it to the air side and radiates to the reactor walls. The reaction pathway and products, in the form of syngas and C₂ hydrocarbons, are also affected. In addition, the operating regimes of ITM reactors in which heterogeneous- or/and homogeneous-phase reactions predominantly contribute to fuel conversion and oxygen permeation are elucidated.en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.memsci.2015.04.006en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceProf. Ghoniem via Angie Locknaren_US
dc.titleThe coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactorsen_US
dc.typeArticleen_US
dc.identifier.citationHong, Jongsup et al. “The Coupling Effect of Gas-Phase Chemistry and Surface Reactions on Oxygen Permeation and Fuel Conversion in ITM Reactors.” Journal of Membrane Science 488 (August 2015): 1–12 © 2015 Elsevier B.V.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.mitauthorGhoniem, Ahmed F
dc.relation.journalJournal of Membrane Scienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8730-272X
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record