Show simple item record

dc.contributor.authorMikkelsen, D. R.
dc.contributor.authorBitter, M.
dc.contributor.authorDelgado-Aparicio, L.
dc.contributor.authorHill, K. W.
dc.contributor.authorCandy, J.
dc.contributor.authorWaltz, R. E.
dc.contributor.authorHoward, Nathaniel Thomas
dc.contributor.authorHughes Jr, Jerry
dc.contributor.authorReinke, Matthew Logan
dc.contributor.authorMa, Y.
dc.contributor.authorGreenwald, Martin J.
dc.contributor.authorRice, John E.
dc.contributor.authorPodpaly, Yuri
dc.date.accessioned2017-09-13T20:12:57Z
dc.date.available2017-09-13T20:12:57Z
dc.date.issued2015-06
dc.date.submitted2015-03
dc.identifier.issn1070-664X
dc.identifier.issn1089-7674
dc.identifier.urihttp://hdl.handle.net/1721.1/111203
dc.description.abstractPeaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.en_US
dc.description.sponsorshipUnited States. Department of Energy (Contract DE-AC02-09CH11466)en_US
dc.description.sponsorshipUnited States. Department of Energy (Contract DE-FC02-99ER54512)en_US
dc.description.sponsorshipUnited States. Department of Energy (Contract DE-FG02-95ER54309)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4922069en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT Plasma Science & Fusion Centeren_US
dc.titleMultispecies density peaking in gyrokinetic turbulence simulations of low collisionality Alcator C-Mod plasmasen_US
dc.typeArticleen_US
dc.identifier.citationMikkelsen, D. R. et al. “Multispecies Density Peaking in Gyrokinetic Turbulence Simulations of Low Collisionality Alcator C-Mod Plasmas.” Physics of Plasmas 22, 6 (June 2015): 062301 © 2015 American Institute of Physics (AIP)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Centeren_US
dc.contributor.mitauthorGreenwald, Martin J
dc.contributor.mitauthorHoward, Nathaniel Thomas
dc.contributor.mitauthorHughes Jr, Jerry
dc.contributor.mitauthorRice, John E
dc.contributor.mitauthorReinke, Matthew Logan
dc.contributor.mitauthorPodpaly, Yuri A
dc.contributor.mitauthorMa, Y.
dc.relation.journalPhysics of Plasmasen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMikkelsen, D. R.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Ma, Y.; Candy, J.; Waltz, R. E.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4438-729X
dc.identifier.orcidhttps://orcid.org/0000-0002-0026-6939
dc.identifier.orcidhttps://orcid.org/0000-0001-8319-5971
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record