Show simple item record

dc.contributor.authorMontemanni, Roberto
dc.contributor.authorBertoni, Francesco
dc.contributor.authorKwee, Ivo
dc.contributor.authorAkhmedov, Murodzhon
dc.contributor.authorKedaigle, Amanda Joy
dc.contributor.authorEscalante, Renan A.
dc.contributor.authorFraenkel, Ernest
dc.date.accessioned2018-01-19T16:08:37Z
dc.date.available2018-01-19T16:08:37Z
dc.date.issued2017-07
dc.date.submitted2017-05
dc.identifier.issn1553-7358
dc.identifier.issn1553-734X
dc.identifier.urihttp://hdl.handle.net/1721.1/113236
dc.description.abstractWith the recent technological developments a vast amount of high-throughput data has been profiled to understand the mechanism of complex diseases. The current bioinformatics challenge is to interpret the data and underlying biology, where efficient algorithms for analyzing heterogeneous high-throughput data using biological networks are becoming increasingly valuable. In this paper, we propose a software package based on the Prize-collecting Steiner Forest graph optimization approach. The PCSF package performs fast and user-friendly network analysis of high-throughput data by mapping the data onto a biological networks such as protein-protein interaction, gene-gene interaction or any other correlation or coexpression based networks. Using the interaction networks as a template, it determines high-confidence subnetworks relevant to the data, which potentially leads to predictions of functional units. It also interactively visualizes the resulting subnetwork with functional enrichment analysis.en_US
dc.description.sponsorshipSwiss National Science Foundation ((205321-147138/1)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (U54-NS-091046)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (U54-NS-091046) )en_US
dc.publisherPublic Library of Science (PLoS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1371/JOURNAL.PCBI.1005694en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0en_US
dc.sourcePLoSen_US
dc.titlePCSF: An R-package for network-based interpretation of high-throughput dataen_US
dc.typeArticleen_US
dc.identifier.citationAkhmedov, Murodzhon, et al. “PCSF: An R-Package for Network-Based Interpretation of High-Throughput Data.” PLOS Computational Biology, edited by Dina Schneidman, vol. 13, no. 7, July 2017, p. e1005694.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.mitauthorAkhmedov, Murodzhon
dc.contributor.mitauthorKedaigle, Amanda Joy
dc.contributor.mitauthorEscalante, Renan A.
dc.contributor.mitauthorFraenkel, Ernest
dc.relation.journalPLOS Computational Biologyen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-01-19T15:12:17Z
dspace.orderedauthorsAkhmedov, Murodzhon; Kedaigle, Amanda; Chong, Renan Escalante; Montemanni, Roberto; Bertoni, Francesco; Fraenkel, Ernest; Kwee, Ivoen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6156-5046
dc.identifier.orcidhttps://orcid.org/0000-0001-6913-4910
dc.identifier.orcidhttps://orcid.org/0000-0001-9249-8181


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record