Show simple item record

dc.contributor.authorVasiliou, AnGayle K.
dc.contributor.authorOldham, James M.
dc.contributor.authorDavid, Donald E.
dc.contributor.authorMuenter, John S.
dc.contributor.authorStanton, John F.
dc.contributor.authorSuits, Arthur G.
dc.contributor.authorBarney Ellison, G.
dc.contributor.authorField, Robert W.
dc.contributor.authorProzument, Kirill
dc.contributor.authorPark III, George Barratt
dc.contributor.authorShaver, Rachel Glyn
dc.contributor.authorField, Robert W
dc.date.accessioned2018-04-03T15:33:26Z
dc.date.available2018-04-03T15:33:26Z
dc.date.issued2014-03
dc.identifier.issn1463-9076
dc.identifier.issn1463-9084
dc.identifier.urihttp://hdl.handle.net/1721.1/114506
dc.description.abstractA Chirped-Pulse millimeter-Wave (CPmmW) spectrometer is applied to the study of chemical reaction products that result from pyrolysis in a Chen nozzle heated to 1000 – 1800 K. Millimeter-wave rotational spectroscopy unambiguously determines, for each polar reaction product, the species, the conformers, relative concentrations, conversion percentage from precursor to each product, and, in some cases, vibrational state population distributions. A chirped-pulse spectrometer can, within the frequency range of a single chirp, sample spectral regions of up to ~10 GHz and simultaneously detect many reaction products. Here we introduce a modification to the CPmmW technique in which multiple chirps of different spectral content are applied to a molecular beam pulse that contains the pyrolysis reaction products. This technique allows for controlled allocation of its sensitivity to specific molecular transitions and effectively doubles the bandwidth of the spectrometer. As an example, the pyrolysis reaction of ethyl nitrite, CH[subscript 3]CH[subscript 2]ONO, is studied at different temperatures of the Chen reactor, and CH[subscript 3]CHO, H[subscript 2]CO, and HNO products are simultaneously observed, exploiting the multi-chirp CPmmW technique. Rotational and vibrational temperatures of some product molecules are determined. Subsequent to supersonic expansion from the heated nozzle, acetaldehyde molecules display a rotational temperature of 4 ± 1 K. Vibrational temperatures are found to be controlled by the collisional cooling in the expansion, and to be both species- and vibrational mode-dependent. Rotational transitions of vibrationally excited formaldehyde in levels ν[subscript 4], 2ν[subscript 4], 3ν[subscript 4], ν[subscipt 2], ν[subscript 3], and ν[subscript 6] are observed and effective vibrational temperatures for modes 2, 3, 4, and 6 are determined and discussed. Keywords: millimeter wave spectroscopy, microwave spectroscopy, broadband rotational spectroscopy, chirped pulse, free induction decay, fast passage, flash pyrolysis, branching, concentration of reaction products, kinetics, dynamics, thermal decomposition, ethyl nitrite, CH[subscript 3]CH[subscript 2]ONO, C[subscript 2]H[subscript 5]ONO, methyl nitrite, CH[subscript 3]ONO, formaldehyde, acetaldehyde, nitroxyl, H[subscript 2]CO, CH[subscript 2]O, CH[subscript 3]CHO, HNO, multi-chirp, Chen nozzle, pulsed valve, tubular reactor, vibrational relaxation, collisional cooling, vibrational temperature, vibrational population distribution, rotational temperature, Coriolis interaction, ortho, para, nuclear spin statistics.en_US
dc.description.sponsorshipUnited States. Army Research Office (Award 58245-CH-11)en_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistry (RSC)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c3cp55352cen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Fielden_US
dc.titleChirped-pulse millimeter-wave spectroscopy for dynamics and kinetics studies of pyrolysis reactionsen_US
dc.typeArticleen_US
dc.identifier.citationProzument, Kirill, et al. “Chirped-Pulse Millimeter-Wave Spectroscopy for Dynamics and Kinetics Studies of Pyrolysis Reactions.” Phys. Chem. Chem. Phys., vol. 16, no. 30, 2014, pp. 15739–51.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.approverField, Robert, W.en_US
dc.contributor.mitauthorProzument, Kirill
dc.contributor.mitauthorPark III, George Barratt
dc.contributor.mitauthorShaver, Rachel Glyn
dc.contributor.mitauthorField, Robert W
dc.relation.journalPhysical Chemistry Chemical Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsProzument, Kirill; Barratt Park, G.; Shaver, Rachel G.; Vasiliou, AnGayle K.; Oldham, James M.; David, Donald E.; Muenter, John S.; Stanton, John F.; Suits, Arthur G.; Barney Ellison, G.; Field, Robert W.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7609-4205
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record