Show simple item record

dc.contributor.authorWakimoto, M.
dc.contributor.authorKac, Victor
dc.date.accessioned2018-05-23T15:24:08Z
dc.date.available2018-05-23T15:24:08Z
dc.date.issued2017-12
dc.identifier.issn0077-1554
dc.identifier.issn1547-738X
dc.identifier.urihttp://hdl.handle.net/1721.1/115644
dc.description.abstractIt is well known that the normalized characters of integrable highest weight modules of given level over an affine Lie algebra [care over g] span an SL[subscript 2](Z)-invariant space. This result extends to admissible [caret over g]-modules, where g is a simple Lie algebra or osp[subscript 1|n]. Applying the quantum Hamiltonian reduction (QHR) to admissible [caret over g]-modules when g = sl[subscript 2] (resp. = osp[subscript 1|2]) one obtains minimal series modules over the Virasoro (resp. N = 1 superconformal algebras), which form modular invariant families. Another instance of modular invariance occurs for boundary level admissible modules, including when g is a basic Lie superalgebra. For example, if g = sl[subscript 2|1] (resp. = osp[subscript 3|2]), we thus obtain modular invariant families of g-modules, whose QHR produces the minimal series modules for the N = 2 superconformal algebras (resp. a modular invariant family of N = 3 superconformal algebra modules). However, in the case when g is a basic Lie superalgebra different from a simple Lie algebra or osp[subscript 1|n], modular invariance of normalized supercharacters of admissible [caret over g]-modules holds outside of boundary levels only after their modification in the spirit of Zwegers’ modification of mock theta functions. Applying the QHR, we obtain families of representations of N = 2, 3, 4 and big N = 4 superconformal algebras, whose modified (super)characters span an SL[subscript 2](Z)-invariant space.en_US
dc.publisherAmerican Mathematical Society (AMS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1090/MOSC/268en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Mathematical Societyen_US
dc.titleRepresentations of superconformal algebras and mock theta functionsen_US
dc.typeArticleen_US
dc.identifier.citationKac, V. G., and M. Wakimoto. “Representations of Superconformal Algebras and Mock Theta Functions.” Transactions of the Moscow Mathematical Society, vol. 78, Dec. 2017, pp. 9–74.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorKac, Victor
dc.relation.journalTransactions of the Moscow Mathematical Societyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-23T14:56:34Z
dspace.orderedauthorsKac, V. G.; Wakimoto, M.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2860-7811
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record