Show simple item record

dc.contributor.authorKaiser, Ashley L
dc.contributor.authorStein, Itai Y
dc.contributor.authorCui, Kehang
dc.contributor.authorWardle, Brian L
dc.date.accessioned2018-07-11T14:57:16Z
dc.date.available2018-07-11T14:57:16Z
dc.date.issued2018-01
dc.date.submitted2017-10
dc.identifier.issn1463-9076
dc.identifier.issn1463-9084
dc.identifier.urihttp://hdl.handle.net/1721.1/116889
dc.description.abstractCapillary-mediated densification is an inexpensive and versatile approach to tune the application-specific properties and packing morphology of bulk nanofiber (NF) arrays, such as aligned carbon nanotubes. While NF length governs elasto-capillary self-assembly, the geometry of cellular patterns formed by capillary densified NFs cannot be precisely predicted by existing theories. This originates from the recently quantified orders of magnitude lower than expected NF array effective axial elastic modulus (E), and here we show via parametric experimentation and modeling that E determines the width, area, and wall thickness of the resulting cellular pattern. Both experiments and models show that further tuning of the cellular pattern is possible by altering the NF-substrate adhesion strength, which could enable the broad use of this facile approach to predictably pattern NF arrays for high value applications.en_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration (Grant NNX17AJ32G)en_US
dc.publisherRoyal Society of Chemistry (RSC)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/C7CP06869Gen_US
dc.rightsCreative Commons Attribution 3.0 Unported licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceRoyal Society of Chemistryen_US
dc.titleProcess-morphology scaling relations quantify self-organization in capillary densified nanofiber arraysen_US
dc.typeArticleen_US
dc.identifier.citationKaiser, Ashley L. et al. “Process-Morphology Scaling Relations Quantify Self-Organization in Capillary Densified Nanofiber Arrays.” Physical Chemistry Chemical Physics 20, 6 (2018): 3876–3881 © 2018 Owner Societiesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorKaiser, Ashley L
dc.contributor.mitauthorStein, Itai Y
dc.contributor.mitauthorCui, Kehang
dc.contributor.mitauthorWardle, Brian L
dc.relation.journalPhysical Chemistry Chemical Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-07-11T14:22:47Z
dspace.orderedauthorsKaiser, Ashley L.; Stein, Itai Y.; Cui, Kehang; Wardle, Brian L.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3229-7315
dc.identifier.orcidhttps://orcid.org/0000-0003-3530-5819
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record