Show simple item record

dc.contributor.authorLun, Zhengyan
dc.contributor.authorJi, Huiwen
dc.contributor.authorBalasubramanian, Mahalingam
dc.contributor.authorKwon, Deok-Hwang
dc.contributor.authorDai, Kehua
dc.contributor.authorLei, Teng
dc.contributor.authorMcCloskey, Bryan D.
dc.contributor.authorYang, Wanli
dc.contributor.authorKitchaev, Daniil Andreevich
dc.contributor.authorClement, Raphaele Juliette
dc.contributor.authorPapp, Joseph C
dc.contributor.authorLee, Jinhyuk
dc.contributor.authorCeder, Gerbrand
dc.contributor.authorRichards, William Davidson
dc.date.accessioned2018-07-12T14:39:57Z
dc.date.available2018-07-12T14:39:57Z
dc.date.issued2018-07-12
dc.date.submitted2018-03
dc.identifier.issn1754-5692
dc.identifier.issn1754-5706
dc.identifier.urihttp://hdl.handle.net/1721.1/116929
dc.description.abstractThe discovery of facile Li transport in disordered, Li-excess rocksalt materials has opened a vast new chemical space for the development of high energy density, low cost Li-ion cathodes. We develop a strategy for obtaining optimized compositions within this class of materials, exhibiting high capacity and energy density as well as good reversibility, by using a combination of low-valence transition metal redox and a high-valence redox active charge compensator, as well as fluorine substitution for oxygen. Furthermore, we identify a new constraint on high-performance compositions by demonstrating the necessity of excess Li capacity as a means of counteracting high-voltage tetrahedral Li formation, Li-binding by fluorine and the associated irreversibility. Specifically, we demonstrate that 10–12% of Li capacity is lost due to tetrahedral Li formation, and 0.4–0.8 Li per F dopant is made inaccessible at moderate voltages due to Li–F binding. We demonstrate the success of this strategy by realizing a series of high-performance disordered oxyfluoride cathode materials based on Mn²+/⁴+ and V⁴+/⁵+ redox.en_US
dc.description.sponsorshipVehicle Technologies Program (U.S.) (Contract No. DE-AC02-05CH11231)en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Energy Efficiency and Renewable Energy. Advanced Battery Materials Research Program (Subcontract No. 7056411)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Reward No. OCI-1147503)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant number ACI- 105357)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF DMR 172025)en_US
dc.description.sponsorshipUnited States. Department of Energy (Contract No. DE-AC02-06C H11357)en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Science (contract no. DE-AC02-05CH11231)en_US
dc.publisherRoyal Society of Chemistry (RSC)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/C8EE00816Gen_US
dc.rightsCreative Commons Attribution-NonCommercial 3.0 Unporteden_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/en_US
dc.sourceRoyal Society of Chemistryen_US
dc.titleDesign principles for high transition metal capacity in disordered rocksalt Li-ion cathodesen_US
dc.typeArticleen_US
dc.identifier.citationKitchaev, Daniil A., Zhengyan Lun, William D. Richards, Huiwen Ji, Raphaële J. Clément, Mahalingam Balasubramanian, Deok-Hwang Kwon, et al. “Design Principles for High Transition Metal Capacity in Disordered Rocksalt Li-Ion Cathodes.” Energy & Environmental Science (2018).en_US
dc.contributor.departmentLincoln Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorKitchaev, Daniil Andreevich
dc.contributor.mitauthorRichards, William D
dc.contributor.mitauthorClement, Raphaele Juliette
dc.contributor.mitauthorPapp, Joseph C
dc.contributor.mitauthorLee, Jinhyuk
dc.contributor.mitauthorCeder, Gerbrand
dc.relation.journalEnergy & Environmental Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-07-11T15:55:31Z
dspace.orderedauthorsKitchaev, Daniil A.; Lun, Zhengyan; Richards, William D.; Ji, Huiwen; Clément, Raphaële J.; Balasubramanian, Mahalingam; Kwon, Deok-Hwang; Dai, Kehua; Papp, Joseph K.; Lei, Teng; McCloskey, Bryan D.; Yang, Wanli; Lee, Jinhyuk; Ceder, Gerbranden_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2309-3644
dc.identifier.orcidhttps://orcid.org/0000-0002-8126-5048
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record