Show simple item record

dc.contributor.authorNavickas, Edvinas
dc.contributor.authorLu, Qiyang
dc.contributor.authorWallisch, Wolfgang
dc.contributor.authorBernardi, Johannes
dc.contributor.authorStöger-Pollach, Michael
dc.contributor.authorFriedbacher, Gernot
dc.contributor.authorHutter, Herbert
dc.contributor.authorFleig, Jürgen
dc.contributor.authorChen, Yan
dc.contributor.authorHuber, Tobias
dc.contributor.authorYildiz, Bilge
dc.date.accessioned2018-07-26T13:41:38Z
dc.date.available2018-07-26T13:41:38Z
dc.date.issued2017-10
dc.date.submitted2017-09
dc.identifier.issn1936-0851
dc.identifier.issn1936-086X
dc.identifier.urihttp://hdl.handle.net/1721.1/117130
dc.description.abstractRevealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO3(LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO3and SrTiO3substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced by dislocations, especially in the LSM films on LaAlO3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO3. The diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk. Keywords: (La,Sr)MnO[subscript 3]; dislocation; epitaxial thin film; oxygen diffusion; oxygen surface exchange; strain; ToF-SIMSen_US
dc.description.sponsorshipUnited States. Department of Energy (Grant DE-SC0002633)en_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/ACSNANO.7B06228en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceACSen_US
dc.titleDislocations Accelerate Oxygen Ion Diffusion in La[subscript 0.8]Sr[subscript 0.2]MnO[subscript 3] Epitaxial Thin Filmsen_US
dc.typeArticleen_US
dc.identifier.citationNavickas, Edvinas et al. “Dislocations Accelerate Oxygen Ion Diffusion in La[subscript 0.8]Sr[subscript 0.2]MnO[subscript 3] Epitaxial Thin Films.” ACS Nano 11, 11 (October 2017): 11475–11487 © 2017 American Chemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorChen, Yan
dc.contributor.mitauthorHuber, Tobias
dc.contributor.mitauthorYildiz, Bilge
dc.relation.journalACS Nanoen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-07-23T13:15:10Z
dspace.orderedauthorsNavickas, Edvinas; Chen, Yan; Lu, Qiyang; Wallisch, Wolfgang; Huber, Tobias M.; Bernardi, Johannes; Stöger-Pollach, Michael; Friedbacher, Gernot; Hutter, Herbert; Yildiz, Bilge; Fleig, Jürgenen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6063-023X
dc.identifier.orcidhttps://orcid.org/0000-0002-2688-5666
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record