Show simple item record

dc.contributor.authorKinefuchi, Ikuya
dc.contributor.authorLu, Zhengmao
dc.contributor.authorWilke, Kyle L.
dc.contributor.authorPreston, Daniel John
dc.contributor.authorChang-Davidson, Elizabeth F.
dc.contributor.authorWang, Evelyn
dc.date.accessioned2018-08-22T18:14:54Z
dc.date.available2018-08-22T18:14:54Z
dc.date.issued2017-10
dc.date.submitted2017-07
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.urihttp://hdl.handle.net/1721.1/117480
dc.description.abstractEvaporation is a ubiquitous phenomenon found in nature and widely used in industry. Yet a fundamental understanding of interfacial transport during evaporation remains limited to date owing to the difficulty of characterizing the heat and mass transfer at the interface, especially at high heat fluxes (>100 W/cm²). In this work, we elucidated evaporation into an air ambient with an ultrathin (≈200 nm thick) nanoporous (≈130 nm pore diameter) membrane. With our evaporator design, we accurately monitored the temperature of the liquid–vapor interface, reduced the thermal–fluidic transport resistance, and mitigated the clogging risk associated with contamination. At a steady state, we demonstrated heat fluxes of ≈500 W/cm² across the interface over a total evaporation area of 0.20 mm². In the high flux regime, we showed the importance of convective transport caused by evaporation itself and that Fick’s first law of diffusion no longer applies. This work improves our fundamental understanding of evaporation and paves the way for high flux phase-change devices. Keywords: evaporation; high flux; Maxwell−Stefan equation; nanoporous; Ultrathinen_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://pubs.acs.org/doi/abs/10.1021/acs.nanolett.7b02889en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceEvelyn Wangen_US
dc.titleAn Ultrathin Nanoporous Membrane Evaporatoren_US
dc.typeArticleen_US
dc.identifier.citationLu, Zhengmao et al. “An Ultrathin Nanoporous Membrane Evaporator.” Nano Letters 17, 10 (September 2017): 6217–6220 © 2017 American Chemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverWang, Evelyn, Nen_US
dc.contributor.mitauthorLu, Zhengmao
dc.contributor.mitauthorWilke, Kyle L.
dc.contributor.mitauthorPreston, Daniel John
dc.contributor.mitauthorChang-Davidson, Elizabeth F.
dc.contributor.mitauthorWang, Evelyn
dc.relation.journalNano Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLu, Zhengmao; Wilke, Kyle L.; Preston, Daniel J.; Kinefuchi, Ikuya; Chang-Davidson, Elizabeth; Wang, Evelyn N.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5938-717X
dc.identifier.orcidhttps://orcid.org/0000-0003-3808-314X
dc.identifier.orcidhttps://orcid.org/0000-0002-0096-0285
dc.identifier.orcidhttps://orcid.org/0000-0001-7045-1200
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record