Show simple item record

dc.contributor.authorHamblin, Meagan
dc.contributor.authorGutierrez, Arnaud
dc.contributor.authorJain, Saloni R.
dc.contributor.authorSaluja, Prerna Bhargava
dc.contributor.authorLobritz, Michael Andrew
dc.contributor.authorCollins, James J.
dc.date.accessioned2018-08-28T15:11:14Z
dc.date.available2018-08-28T15:11:14Z
dc.date.issued2017-12
dc.date.submitted2017-10
dc.identifier.issn1097-2765
dc.identifier.issn1097-4164
dc.identifier.urihttp://hdl.handle.net/1721.1/117581
dc.description.abstractPhysiologic and environmental factors can modulate antibiotic activity and thus pose a significant challenge to antibiotic treatment. The quinolone class of antibiotics, which targets bacterial topoisomerases, fails to kill bacteria that have grown to high density; however, the mechanistic basis for this persistence is unclear. Here, we show that exhaustion of the metabolic inputs that couple carbon catabolism to oxidative phosphorylation is a primary cause of growth phase-dependent persistence to quinolone antibiotics. Supplementation of stationary-phase cultures with glucose and a suitable terminal electron acceptor to stimulate respiratory metabolism is sufficient to sensitize cells to quinolone killing. Using this approach, we successfully sensitize high-density populations of Escherichia coli, Staphylococcus aureus, and Mycobacterium smegmatis to quinolone antibiotics. Our findings link growth-dependent quinolone persistence to discrete impairments in respiratory metabolism and identify a strategy to kill non-dividing bacteria. Gutierrez et al. show that activation of cellular respiration is sufficient to sensitize antibiotic refractory bacteria at high densities to drugs targeting DNA topoisomerases. This suggests that the nutrient environment and metabolic state are key components of bacterial persistence phenotypes. Keywords: quinolones; drug persistence; antibiotic; oxidative phosphorylationen_US
dc.description.sponsorshipDefense Threat Reduction Agency (DTRA) (Grant HDTRA1-15-1-0051)en_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.MOLCEL.2017.11.012en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleUnderstanding and Sensitizing Density-Dependent Persistence to Quinolone Antibioticsen_US
dc.typeArticleen_US
dc.identifier.citationGutierrez, Arnaud et al. “Understanding and Sensitizing Density-Dependent Persistence to Quinolone Antibiotics.” Molecular Cell 68, 6 (December 2017): 1147–1154 © 2017 The Authorsen_US
dc.contributor.departmentInstitute for Medical Engineering and Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.mitauthorGutierrez, Arnaud
dc.contributor.mitauthorJain, Saloni R.
dc.contributor.mitauthorSaluja, Prerna Bhargava
dc.contributor.mitauthorLobritz, Michael Andrew
dc.contributor.mitauthorCollins, James J.
dc.relation.journalMolecular Cellen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-08-27T18:50:09Z
dspace.orderedauthorsGutierrez, Arnaud; Jain, Saloni; Bhargava, Prerna; Hamblin, Meagan; Lobritz, Michael A.; Collins, James J.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9512-0659
dc.identifier.orcidhttps://orcid.org/0000-0002-0712-3383
dc.identifier.orcidhttps://orcid.org/0000-0002-5560-8246
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record