Show simple item record

dc.contributor.authorGuo, Chun-Jun
dc.contributor.authorChang, Fang-Yuan
dc.contributor.authorWyche, Thomas P.
dc.contributor.authorBackus, Keriann M.
dc.contributor.authorAcker, Timothy M.
dc.contributor.authorFunabashi, Masanori
dc.contributor.authorTaketani, Mao
dc.contributor.authorDonia, Mohamed S.
dc.contributor.authorNayfach, Stephen
dc.contributor.authorPollard, Katherine S.
dc.contributor.authorCraik, Charles S.
dc.contributor.authorCravatt, Benjamin F.
dc.contributor.authorClardy, Jon
dc.contributor.authorVoigt, Christopher A.
dc.contributor.authorFischbach, Michael A.
dc.date.accessioned2018-09-12T17:52:03Z
dc.date.available2018-09-12T17:52:03Z
dc.date.issued2017-01
dc.date.submitted2016-10
dc.identifier.issn0092-8674
dc.identifier.issn1097-4172
dc.identifier.urihttp://hdl.handle.net/1721.1/117726
dc.description.abstractThe gut microbiota modulate host biology in numerous ways, but little is known about the molecular mediators of these interactions. Previously, we found a widely distributed family of nonribosomal peptide synthetase gene clusters in gut bacteria. Here, by expressing a subset of these clusters in Escherichia coli or Bacillus subtilis, we show that they encode pyrazinones and dihydropyrazinones. At least one of the 47 clusters is present in 88% of the National Institutes of Health Human Microbiome Project (NIH HMP) stool samples, and they are transcribed under conditions of host colonization. We present evidence that the active form of these molecules is the initially released peptide aldehyde, which bears potent protease inhibitory activity and selectively targets a subset of cathepsins in human cell proteomes. Our findings show that an approach combining bioinformatics, synthetic biology, and heterologous gene cluster expression can rapidly expand our knowledge of the metabolic potential of the microbiota while avoiding the challenges of cultivating fastidious commensals. Keywords: microbiome; natural products; synthetic biology; metagenomics; biosynthetic gene cluster; peptide aldehyde; protease inhibitoren_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.CELL.2016.12.021en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleDiscovery of Reactive Microbiota-Derived Metabolites that Inhibit Host Proteasesen_US
dc.typeArticleen_US
dc.identifier.citationGuo, Chun-Jun et al. “Discovery of Reactive Microbiota-Derived Metabolites That Inhibit Host Proteases.” Cell 168, 3 (January 2017): 517–526 © 2017 Elsevier Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Synthetic Biology Centeren_US
dc.contributor.mitauthorChang, Fang-Yuan
dc.contributor.mitauthorVoigt, Christopher A.
dc.relation.journalCellen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-09-12T13:11:59Z
dspace.orderedauthorsGuo, Chun-Jun; Chang, Fang-Yuan; Wyche, Thomas P.; Backus, Keriann M.; Acker, Timothy M.; Funabashi, Masanori; Taketani, Mao; Donia, Mohamed S.; Nayfach, Stephen; Pollard, Katherine S.; Craik, Charles S.; Cravatt, Benjamin F.; Clardy, Jon; Voigt, Christopher A.; Fischbach, Michael A.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3783-0433
dc.identifier.orcidhttps://orcid.org/0000-0003-0844-4776
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record