MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Approach to coherent interference fringes in helium-surface scattering

Author(s)
Heller, Eric J.; Schram, Matthew Christopher
Thumbnail
DownloadPhysRevA.98.022137.pdf (626.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The conventional notion of elastic, coherent atom-surface scattering originates from the scattering particles acting as a quantum-mechanical matter wave, which coherently interfere to produce distinct Bragg peaks which persist at finite temperature. If we introduce inelastic scattering to this scenario, the result is that the surface particles become displaced by the scattering atoms, resulting in emission or absorption of phonons that shift the final energy and momentum of the scatterer. As the lowest-lying phonons are gapless excitations, the ability to measure these phonons is very difficult and this difficulty is exacerbated by the roughly 1-eV resolution found in high-energy helium scattering experiments. Even though the surface has in effect measured the presence of the scatterer which decoheres the particle, we retain the diffraction spots which are referred to as coherent scattering. How do we reconcile these disparate viewpoints? We propose an experiment to more precisely examine the question of coherence in atom-surface scattering. We begin with an initially coherent superposition of helium particles with equal probabilities of interacting with the surface or not interacting with the surface. The beams are directed so that after the scattering event, the atoms are recombined so that we can observe the resulting interference pattern. The degree to which phonons are excited in the lattice by the scattering process dictates the fringe contrast of the interference pattern of the resulting beams. We use semiclassical techniques to simulate and test the viability of this experiment and show that for a wide range of conditions, despite the massive change in the momentum perpendicular to the surface, we can still expect to have coherent (in the superposition sense) scattering.
Date issued
2018-08
URI
http://hdl.handle.net/1721.1/117758
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review A
Publisher
American Physical Society
Citation
Schram, Matthew C. and Heller, Eric J. "Approach to coherent interference fringes in helium-surface scattering." Physical Review A 98, 2 (August 2018): 022137 © 2018 American Physical Society
Version: Final published version
ISSN
2469-9926
2469-9934

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.